Смекни!
smekni.com

П. П. Гайденко Научная рациональность и философский разум (стр. 56 из 112)

Не случайно часы — своего рода парадигма мышления ученых XVII века. Пример множества часов, по-разному устроенных, но показывающих одно и то же время, фигурирует в философских трактатах самых разных философов этой эпохи. По Декарту, мы можем не доискиваться сходства в колесах этих часов, так как одного и того же действия можно добиться с помощью разных причин, то бишь разных систем колесиков и пружинок. Прежде наука стремилась понять природу, так сказать, в ее внутреннем устройстве, но это, по убеждению Декарта, не только невозможно, но, что важнее, и не нужно — идти надо другим путем: не так уж важно, имеется ли действительное сходство между «колесами» реального мира и мира, как мы его конструируем, — лишь бы совпадали следствия того и другого, т. е. явления природы — с выводами из наших предположений. Новый подход к познанию природы требует, по Декарту, отвергнуть те способы ее исследования, которые применялись раньше. Задача науки — не в раскрытии тайн природы, к каждой из которых должен быть подобран свой, индивидуальный ключ, а в конструировании идеальных моделей тех реальных явлений, которые мы хотим познать. Поэтому нам следует выбирать простейшие и понятнейшие нам самим средства, элементы, из которых мы будем строить явления, по своим функциям аналогичные искомому. Поэтому ученый, подобно инженеру или ремесленнику, должен сначала создать инструментарий для своей деятельности, а таковым Декарт считает метод, или, как он иногда говорит, «универсальную науку» — mathesis universalis. «Под методом, — пишет Декарт, — я разумею точные и простые правила, строгое соблюдение которых всегда препятствует принятию ложного за истинное и без излишней траты умственных сил, но постепенно и непрерывно увеличивая знания, способствует тому, что ум достигает истинного познания того, что ему доступно»18. Ме

-261-

тод, как его понимает Декарт, должен превратить познание в организованную деятельность, освободив его от случайностей, от таких субъективных факторов, как наблюдательность или острый ум, с одной стороны, удачи или счастливого стечения обстоятельств — с другой. Образно говоря, метод превращает научное познание из кустарного промысла в промышленность, из спорадического и более или менее случайного обнаружения истин — в систематическое и планомерное их производство.

Возникает вопрос: поскольку Декарт подчеркивает гипотетический характер идеальных конструкций, не возвращается ли он тем самым к принципу «спасения явлений» старой астрономии? Не ближе ли он к этой последней, чем Галилей? Нет, не возвращается; более того, он формирует философское (натурфилософское) основание для отождествления предмета математики с предметом физики, основание, которого не хватало Галилею, а именно: сущность материального составляет протяжение (материя, по Декарту, в отличие от духа есть субстанция протяженная). А коль скоро это так, то геометрия в состоянии дать не только описание, а и причинное объяснение природных процессов. Таким образом, позиция Декарта здесь далеко не однозначна: трудности, связанные с вопросом о природе и значимости математической конструкции, полностью преодолеть не удалось и Декарту.

Вопрос об идеализованном объекте, о степени его адекватности природному явлению и процессу, т. е. о сущности эксперимента, является одной из сложнейших проблем не только в XVII веке, но и в последующие периоды, вплоть до наших дней19. Та перестройка логико-методологических оснований физики, которая произошла в XVII-XVIII вв. и положила начало экспериментально-математическому естествознанию, открыла широкие перспективы для освоения человечеством природы, реализовав проект Декарта о науке как «поточном производстве» открытий-конструкций. Однако эта перестройка породила и ряд новых проблем как в рамках самой науки, так и за ее пределами. Вопрос о границах применимости человеческих конструктов, т. е. о границах человеческого могущества по отношению к природе, стоит сегодня еще более остро, чем в описанную нами эпоху зарождения нового естествознания. Теперь это

-262-

уже не просто теоретический, но и практический — прежде всего экологический — вопрос: природа — не только объект, который мы подчиняем себе и которым овладеваем, она — наш дом, условие и источник нашего существования. Она, наконец,—это мы сами: ведь мы не только социальные, но и природные существа.

ПРИМЕЧАНИЯ

1 Гемин (около I в.) — ученик известного стоика Посидония, математик и астроном, продолжатель традиции древнегреческого математика Евдокса.

2 Симшшкий (ум. в 549 г.) — философ-неоплатоник, автор известных комментариев к сочинениям Аристотеля и Эпиктета.

3 Цит. по: CrombieA.C. Medieval and Early Modern Science. Cambridge (Mass.), 1963. Vol. 1. P. 87-88.

4 Гоббс Т. Избранные произведения в двух томах. Т. 1. М., 1965. С. 235-236.

5 Там же. С. 236.

6 Там же.

7 Там же.

8 См. с. 170-172 настоящей работы.

9 См.: Архимед. Соч. М., 19624 С. 299. Как отмечает в этой связи А.В. Ахутин, «геометрические теоремы, полученные Архимедом с по мощью механических методов, он не считает тем самым доказанными, напротив, их подлинное доказательство может быть проведено только в аксиоматической системе самого Евклида» (Ахутин А.В. История принципов физического эксперимента. М., 1976. С. 91).

10 Гюйгенс X. Трактат о свете. М.-Л., 1935. С. 6-7.

11 ДекартР. Избранные произведения. М., 1950. С. 510.

12 Там же. С. 196.

13 См. об этом: Каире А. Очерки истории философской мысли. М., 1985. С. 214.

14 Декарт Р. Цит. соч. С. 315.

15 Там же. С. 541.

16 См.: Ньютон И. Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света. М., 1954. С. 279-280. 17ДекартР. Цит. соч. С. 540-541.

18 Там же. С. 89.

17 Сегодня этот вопрос стоит не менее остро, чем в XVII веке, хотя и формулируется по-новому. «Как на макро-, так и на микроскопическом уровне, — пишут современные ученые И. Пригожий и И. Стенгерс, — науки о природе освобождаются от узости концепции, согласно которой наши эксперименты (и соответственно наши конструкции. — П.Г.) полностью отражают объективную реальность и которая принци

-263-

пиально отрицает любое необъяснимое новшество и разнообразие во имя некоего незыблемого закона». Пригожин И., Стенгерс И. Возвращенное очарование мира // Природа. 1986. № 2. С. 89. См. также: Prigogine I., Stengers I. La nouvelle alliance: metamorphoses de la Science. P., 1981. P. 273.

Глава III

К ИСТОРИИ ПРИНЦИПА НЕПРЕРЫВНОСТИ

Понятие научной революции сегодня прочно вошло в наше сознание, и плодотворность его при анализе истории науки очевидна. Однако, как это нередко бывает, новые и весьма полезные идеи начинают иной раз применяться слишком смело и широко, выходя за рамки той границы, внутри которой они вполне справедливы. Так, например, по отношению к XVII веку понятие научной революции мыслится некоторыми исследователями столь радикально, что предшествующий период развития научного знания, а именно античная и средневековая наука объявляются либо вообще не-наукой, пред-наукой и т. д., либо «совсем другой наукой», не имеющей ничего общего с математикой и естествознанием XVII-XVIII вв. В этой ситуации исследование судьбы античных научных традиций позволяет внести нужные коррективы, установив более точный смысл понятия «научной революции», т. е. ограничив его, ибо оно сегодня имеет тенденцию утратить свою границу, т. е. из научного понятия превратиться в идеологическое.

Хорошо известно, что в XVII веке пересматривается ряд принципов и понятий античной и средневековой науки. Во-первых, на место конечного космоса встает бесконечная вселенная, и пространство из анизотропного становится изотропным. Во-вторых, меняется понимание движения — основного понятия физики и натурфилософии: закон аристотелианской физики «все движущееся движется чем-нибудь» заменяется законом инерции, благодаря чему отменяется прежде незыблемое противопоставление движения и покоя как качественно разных состояний. Закон инерции как раз предполагает бесконечность вселенной, благодаря которой круговое движение,

-264-

прежде считавшееся самым «совершенным», «выпрямляется» и приравнивается к прямолинейному. В-третьих, не остаются неизменными и основания математики; становление новой механики как основной науки о природе имеет в качестве своей предпосылки создание инфинитезимального исчисления, которое первоначально — у Галилея, Кавальери, Торричелли и др. — сопровождается пересмотром важнейших положений античной математики, и прежде всего метода исчерпывания, который на первый взгляд и кажется сходным с дифференциальным исчислением.

Мы упомянули только самые значительные изменения, происшедшие в XVI-XVII вв., но их вполне достаточно, чтобы охарактеризовать этот период как научную революцию. Наибольшей критике в XVII веке, как известно, подверглась перипатетическая программа, и не только физика и космология, но и метафизика Аристотеля, столь авторитетного в Средние века, стала главной мишенью нападок Галилея и Декарта, Фр. Бэкона и П. Гассенди. Аристотелевской научной программе прежде всего противопоставлялась математическая — платоновско-пифагорейская, или атомистическая — демокритова, а нередко и «синтез Платона и Демокрита», как охарактеризовал галилееву механику А. Койре. Уже сам факт такого противопоставления, кстати, свидетельствует о том, что пересмотр античных научных традиций был отнюдь не универсальным, хотя в Новое время существенно меняется не только структура античной математики, но и понятие атома не всегда совпадает с демокритовским.

Мне, однако, хотелось бы показать, что и судьба некоторых принципов аристотелевской программы оказалась в Новое время не столь однозначной, как первоначально может показаться. Прежде всего это принцип непрерывности, как его сформулировал Аристотель в «Физике». Этот принцип фундаментален для Аристотеля; с его помощью греческий философ решал целый ряд проблем, возникших не только в физике и математике, но и в философии — в связи с апориями Зенона. Здесь мы, по-видимому, вправе говорить именно о прогностической функции философии по отношению к науке, функции, специально рассмотренной в последних работах B.C. Степина1.