Смекни!
smekni.com

П. П. Гайденко Научная рациональность и философский разум (стр. 62 из 112)

По-видимому, та характеристика теоретико-множественного понимания континуума, которую дает Г. Вейль, может быть отнесена и к теории континуума Дедекинда. «...Наша концепция, — говорит Вейль, имея в виду концепцию Г. Кантора, — остается по-прежнему статической, характерным для нее является ничем не ограниченное применение терминов «все» и «существует» не только к натуральным числам, но также и к местам в континууме, т. е. к возможным последовательностям или множествам натуральных чисел. В этом и заключается сущность теории множеств: она рассматривает в качестве замкнутой совокупности существующих самих по себе предметов не только числовой ряд, но и совокупность его подмножеств. Поэтому она целиком базируется на почве актуально бесконечного»71. Когда Вейль характеризует теоретико-множественную концепцию как «статическую», он имеет в виду то же различение бесконечного как «бытия» и как «становления», о котором у нас шла речь выше. Дедекинд в своей трактовке непрерывности возвращается, таким образом, не к Аристотелю и Евклиду, а скорее к Лейбницу, у которого речь идет не просто о бесконечной делимости как незавершимом процессе («становления»), а о «бесконечной разделенности» как завершенном состоянии (т. е. «бытии»).

Вероятно, именно в силу того, что принцип непрерывности математики и философы уже более ста лет отождествляют с аксиомой непрерывности Дедекинда, античная его формулировка представ

-289-

ляется чем-то архаическим, нестрогим и неточным. Чаще всего в научном обиходе античный метод вообще не фигурирует, оказывается вне поля зрения, как это хорошо показывает И.Г. Башмакова, сравнивая Евдокса и Дедекинда. «Общая теория отношений, — пишет И.Г. Башмакова, — была построена Евдоксом Книдским в IV в. до н. э. и дошла до нас в изложении Евклида... Она оставалась, по существу, непонятой и считалась весьма искусственной, пока Р. Дедекинд не построил в 1870-1871 гг. прошлого века свою теорию сечений, с помощью которой определил действительные числа. И тогда все вдруг "поняли" теорию Евдокса, которая основана на той же конструкции, что и теория сечений»72.

А между тем всякий раз, когда оперирование понятием актуально бесконечного приводит к парадоксам, как это случилось и с теорией множеств, математическая мысль вновь пытается обосновать свои построения на понятии «становления» (возможности), а не «бытия» (действительности). И независимо от того, известна ли математикам аристотелева (и кантова) теория непрерывности, они невольно вновь обращаются к ней.

Так в XX веке близкую к античной математике точку зрения на непрерывность обосновывал Л.Э. Брауэр, построивший, по словам Вейля, «строгую математическую теорию континуума, рассматривающую последний не как некое застывшее бытие, но как среду свободного становления»73. Мы не будем здесь рассматривать принцип непрерывности Брауэра — достаточно лишь указать на то, что характерная для античности постановка проблемы континуума отнюдь не была отменена в период становления науки Нового времени, хотя аристотелевская теория движения, как и учение о конечном космосе, в XVIII веке были отвергнуты. К тем принципам, которые после довольно длительного периода их критики (отчасти у Галилея, затем — у Кавальери и Торичелли, а также в математическом анализе — у Валиса, братьев Бернулли и других математиков, опиравшихся на понятие актуально существующего бесконечно малого) вновь получили признание в математике и философии в XVIII и XIX вв., принадлежат, как мы видели, теория отношений Евдокса и понятие непрерывности Аристотеля. Судьба античной идеи непрерывно

-290-

сти свидетельствует о том, насколько неверно то представление (получившее сегодня широкое распространение как среди философов, так и среди ученых), что наука в собственном смысле слова начинается только в XVII веке. Столь же несостоятельно и утверждение, что существует столько же разных, не совместимых между собой «наук», сколько имеется разных «культур», а потому понятия, которыми оперирует, скажем, аристотелевская физика, совершенно не переводимы на язык физики Нового времени. Конечно, в рамках различных культурно-исторических контекстов научные теории имеют свои особенности, но эти особенности нельзя слишком абсолютизировать, иначе окажется невозможной никакая историческая реконструкция прошлого.

Рассмотрение исторической судьбы того или иного научного понятия или принципа может оказаться весьма плодотворным как для того, чтобы более корректно пользоваться понятием «научная революция», так и для того, чтобы показать реальные возможности истории науки в плане реконструкции проблемы, сохраняющей свое значение на протяжении веков и даже тысячелетий. И, быть может, такая реконструкция окажется полезной также и для решения этой проблемы — по крайней мере для ее более четкой и сознательной постановки.

ПРИМЕЧАНИЯ

1 Сопоставление истории философии и истории естествознания позволяет констатировать, что философия обладает определенными прогностическими возможностями по отношению к естественнонаучному поиску, поскольку она способна заранее вырабатывать необходимые для него категориальные структуры» (Спгепин B.C. О прогностической природе философского знания: Философия и наука / «Вопросы философии», № 4,1986. С. 42.

2 См. с. 139-140 настоящей книги.

3 Физика, V, 3. 226Ь-227а.

4 Физика, V, 4.

5 Физика, VI, 2, 233а.

6 Евклид. Начала, кн. I-VI. С. 142.

7 Об этом подробнее см. с. 113 настоящей книги.

8 Физика, Ш, 6, 206Ь.

-291-

9 Физика, III, 6, 20 7а.

10 Еще до Кавальери метод исчисления неделимых применил Кеплер в своей «Стереометрии винных бочек». Однако, подобно античным математикам, он рассматривал этот метод лишь как технику вычисления, а не как строго научный, т. е. математический, метод.

11 Галилей. Избранные труды в двух томах. Т. 2. М., 1964. С. 131.

12 Там же. С. 131-132.

13 Там же. С. 132.

14 С помощью понятия «неделимых» Галилей пытается решить задачу «колеса Аристотеля: при совместном качении двух концентрических кругов больший проходит то же расстояние, что и меньший. Как это возможно? Разделяя линию на некоторые конечные и потому поддающиеся счету части, нельзя получить путем соединения этих частей линии, превышающей по длине первоначальную, не вставляя пустых пространств между ее частями; но представляя себе линию, разделенную на неконечные части, т. е. на бесконечно многие ее неделимые, мы можем мыслить ее колоссально растянутой без вставки конечных пустых пространств, а путем вставки бесконечно многих неделимых пустот» / Галилей. Избранные труды. Т. 2, С. 135.

15 Цит. по книге: Клайн М. Математика. Утрата определенности, М., 1984. С. 176.

16 Цит. по книге: Lasswitz К. Geschichte der Atomistik, 1,1890. S. 191.

17 Кавальери Б. Геометрия, изложенная новым способом при помощи неделимых непрерывного, М.-Л., 1940. С. 277.

18 Кавальери Б. Геометрия. С. 89.

19 Там же. С. 91.

20 Вот что говорит об этом сам Кавальери: «От меня не скрыто, что о строении континуума и о бесконечном весьма много спорят философы, выдвигая такие положения, которые находятся в разногласии с немалым числом моих принципов. Они будут колебаться либо потому, что понятие всех линий или всех плоскостей кажется им непонятным и более темным, чем мрак Киммерийский, либо потому, что мой взгляд склоняется к строению континуума из неделимых, либо, наконец, потому, что я осмелился признать за прочнейшее основание геометрии тот факт, что одно бесконечное может быть больше другого» (Цит. по книге: Зубов В.П. Развитие атомистических представлений до начала XIX века. С. 223).

21 Cavalerius D. Geometria mdivisibilibus continuorum nova quadam ratione promota, Bononiae 1635, lib. VII, p. 2.

22 Галилей. Избранные труды. Т. 2. С. 154.

23 Галилей называл их иногда «невеличинами», пытаясь избежать парадоксов. «Самая возможность продолжать деление на части приводит к необходимости сложения из бесконечного множества невеличин» (Там же. С. 142).

24 Цит. по книге: Кавальери Б. Геометрия. Предисловие С.Я. Лурье. С. 37.

25 Лурье С.Я. Математический эпос Кавальери. Предисловие к кн.: Кавальери Б. Геометрия. С. 39.

25 «Утверждали иногда, — пишет по этому поводу В.П. Зубов, — что Галилей продолжил традицию Демокрита. С гораздо большим основа

-292-

нием можно говорить, однако, о традиции Архимеда. Ведь мы знаем, что, по Демокриту, континуум слагался из элементов того же рода (тела из мельчайших тел и т. д.), тогда как у Архимеда речь шла об элементах п-1 порядка» (Зубов В.П. Цит. соч. С. 215-216).

27 Декарт Р. Избранные произведения. М., 1960. С. 475.

28 Там же. С. 437-438.

29 В «Трактате о конических сечениях, изложенных новым методом» (1655), Валлис, ссылаясь на Кавальери, рассматривает площади плоских фигур как составленные из бесконечно многих параллельных линий. При этом, как пишет А.П. Юшкевич, «бесконечно малое количество то отождествляется с нулевым.., то параллелограммы бесконечно малой высоты объявляются вряд ли чем-либо иным, нежели линия...» (Юшкевич А.П. Развитие понятия предела до К. Вейерштрасса / Историко-математические исследования. Вып. XXX. М., 1986. С. 25). Валлис, таким образом воспроизводит те же принципы, что мы видели у Кавальери, и соответственно те же теоретические затруднения.

30 Юшкевич АИ. Идеи обоснования математического анализа в XVIII в. Там же. С. 26.

31 Ньютон И. Математические начала натуральной философии. С. 57.

32 Мордухай-Болтовской Д.Д. Комментарии к Ньютону. Ньютон И. Математические работы. М.-Л, 1937. С. 289.

33 Интересно, что известный математик К. Маклоран, пытавшийся защитить ньютоновский метод флюксий от критики Дж. Беркли (в сочинении «Аналист» 1734), в своем «Трактате о флюксиях» сближает метод Ньютона с методом исчерпывания Евклида и Архимеда. В основе метода исчерпывания лежит сколь угодно точное приближение к искомой величине с помощью сходящихся к ней сверху и снизу последовательностей известных величин. Вот как формулирует сущность метода исчерпывания Маклоран: если две переменные величины АР V.AQ, находящиеся друг к другу в неизменном отношении, одновременно приближаются к двум определенным величинам АВ и AD так, что разности между ними оказываются меньшими любой заданной величины, то отношение пределов будет тем же, что и отношение переменных величин АР и AQ (см.: Maclaurin С. Treatise of Fluxions in Two Books, 1742. T. I, p. 6).