Смекни!
smekni.com

П. П. Гайденко Научная рациональность и философский разум (стр. 63 из 112)

34 Лейбниц Г.В. Сочинения. Т. 3. М., 1984. С. 287.

35 Там же. С. 287.

36 Лейбниц Г.В. Сочинения. Т. 2. М., 1984. С. 157.

37 См. там же. С. 158.

38 См. там же. С. 53.

39 ЛейбницГЈ. Сочинения. Т. 3. С. 294. Здесь в переводе фраза несколько утяжелена, и мысль Лейбница ясна не сразу.. В сущности философ утверждает, что любая часть материи не только делима до бесконечности, но и актуально разделена на бесконечное множество физических точек.

40 Там же. С. 316.

41 Там же. С. 246.

42 Там же. С. 247.

43 Там же. С. 250.

42 Там же. С. 252.

-293-

45 Там же.

46 Там же. С. 253.

47 Там же. С. 254.

48 Там же. С. 255.

49 Там же. С. 256.

50 Там же.

51 Там же. С. 263.

52 Там же. С. 260.

53 Юшкевич АЛ. Идеи обоснования математического анализа в XVIII веке. С. 14-15.

54 «Необходимо указать на источник, откуда вытекла эта идея в широкую публику и сделалась столь распространенной. Нет никакого сомнения, что таким первоисточником является открытие анализа бесконечных, и, говоря определеннее, мы можем утверждать, что Лейбниц как математик и философ ввел в общественное сознание идею непрерывности; мы можем даже сказать, что система Лейбница есть почти вся целиком коррелят его работ по анализу, гениальная транспонировка самим изобретателем математических данных на философский язык» (Флоренский ПА. Введение к диссертации «Идея прерывности как элемент миросозерцания» / Историко-математические исследования. Вып. XXX. М., 1986. С. 160.

55 Лейбниц Г.В. Сочинения Т. 2. С. 56.

56 Там же. Т. З.С. 413.

57 Там же. Т. 1.С.413: «Сложная субстанция есть не что иное, как собрание, или агрегат, простых».

58 «...Не существует части вещества, в которой бы не было бесконечного множества органических и живых тел... Однако отсюда еще не следует, что всякая часть вещества одушевлена, точно так же как мы не говорим, что пруд, полный рыбы, одушевлен, хотя рыбы — одушевленные существа» (Лейбниц. Избр. филос. соч. С. 240).

59 Leibniz G.W. Die philosophische Schriften, hrsg. Von C.I. Gerhardt, Bd. VI, S. 624.

60 Кант. Сочинения. Т. 6. С. 103.

61 Там же.

62 Цит. по: Клайн М. Математика. Утрата определенности. С. 175. Характерно, что победитель конкурса, швейцарский математик С. Люилье, представил работу под девизом: «Бесконечность — пучина, в которой тонут наши мысли» (См. там же).

63 Коши О.Л. Алгебраический анализ. СПб., 1864. С. 19.

64 Дедеки Р. Непрерывность и иррациональные числа. Одесса, 1923. С. 17.

65 Там же. С. 9-10.

66 Там же. С. 17.

67 Цит. по: Becker О. Grundlage der Mathematik in geschichtlicher Entwicklung, Frankfurt a M., 1975. S. 237.

68 Ibid. S. 240.

69 Ibid. S. 241.

-294-

70 Цит. по книге: Becker O. Grundlage der Mathematik in geschichtlicher Entwicklung. S. 243.

71 Вейль Г. О философии математики. С. 73.

72 Башмакова И.Г. О роли интерпретаций в истории математики. ИМИ, вып. XXX. С. 186.

73 Вейль. Г. О философии математики. С. 22.

Глава IV

ОБОСНОВАНИЕ ГЕОМЕТРИИ У ПЛАТОНА, ПРОКЛА И КАНТА

Работа над обоснованием математического знания сыграла существенную роль в становлении идеализма Платона; о том, насколько принципиальным был вопрос о природе математики для Канта, хорошо известно. Однако не менее известно и то, насколько различными оказались концепции математического знания у обоих философов, и это различие мешало разглядеть то общее, что составляет важный момент философии математики у этих мыслителей, один из которых стоял у истоков «Начал» Евклида1, а другой, фигурально выражаясь, почти у «конца» евклидовой геометрии, если принять во внимание, что спустя немногим более полувека после смерти Канта эта геометрия потеряла свое прежде абсолютное значение и стала лишь одной из возможных наряду с геометрией Римана и Лобачевского.

Развитие греческой математики в VI и V вв. до н. э. в первую очередь связано с пифагореизмом. У пифагорейцев мы находим новое — по сравнению с восточной математикой — понимание числа и числовых соотношений, а в связи с этим и новое представление о задачах математической науки: с помощью чисел пифагорейцы не просто решают практически-прикладные задачи, а пытаются объяснить природу всего сущего. Однако у пифагорейцев мы не находим логико-онтологического обоснования числа. Как свидетельствует Аристотель, они отождествляли числа с вещами. «...Пифагорейцы признают одно — математическое — число, только не с отдельным бытием, но, по их словам, чувственные сущности состоят из этого числа: ибо все небо они устраивают из чисел, только у них это — не числа, состоящие из (отвлеченных) единиц, но единицам они приписывают (пространственную) вели

-295-

чину; а как получилась величина у первого единого, это, по-видимому, вызывает затруднение у них»2.

Вместе с развитием критицизма и появлением скептических мотивов — сперва у элеатов3, а позднее в более резкой форме — у софистов — возникает настоятельная потребность уяснить логическую природу и онтологический статус числа, а тем самым и природу той связи, которая существует между «числами и вещами». Поскольку софисты доказывали, что познание вообще носит субъективный характер, определяется особенностями познающего, то в этой ситуации проблема обоснования математики выступает в тесной связи с вопросом о возможности истинного знания вообще.

Решением обоих этих вопросов и занялся Платон. Математика служила для него образцом научного знания, а потому, идя от нее, он искал способа обоснования науки в целом. Вот как определяет Платон природу числа. «Как ты думаешь, Главкон, если спросить их (математиков. — П.Г.): «Достойнейшие люди, о каких числах вы рассуждаете? Не о тех ли, в которых единица действительно такова, какой вы ее считаете, — то есть всякая единица равна всякой единице, ничуть от нее не отличается и не имеет в себе никаких частей ?» — как ты думаешь, что они ответят? — Да, по-моему, что они говорят о таких числах, которые допустимо лишь мыслить, а иначе с ними никак нельзя обращаться»4. Еще более выразителен следующий отрывок: «... когда они (геометры. — П.Г.) вдобавок пользуются чертежами и делают отсюда выводы, их мысль обращена не на чертеж, а на те фигуры, подобием которых он служит. Выводы свои они делают только для четырехугольника самого по себе и его диагонали, а не той диагонали, которую они начертили. Так и во всем остальном. То же самое относится к произведениям ваяния и живописи: от них может падать тень, и возможны их отражения в воде, но сами они служат лишь образным выражением того, что можно видеть не иначе как мысленным взором*5. Всякий чертеж, таким образом, есть лишь чувственное подобие некоторого идеального образования — в противном случае невозможно было бы говорить ни о равенстве отрезков (всякое равенство эмпирических предметов и их чувственных изображений является лишь приблизительным), ни об их соизмеримости.

-296-

Как видим, важнейшая характеристика числа — это его идеальность, в силу которой его «можно только мыслить». Ни числа, ни геометрические объекты — точка, линия, треугольник и т. д. — не существуют в эмпирической реальности, в мире чувственном: здесь мы имеем дело только с их «образными выражениями». Потому они как раз и вводят нас в сферу, в которую, по Платону, можно войти лишь с помощью мышления, а это, с точки зрения Платона, и есть сфера истинного бытия, всегда себе тождественного, вечно пребывающего, в отличие от изменчивого мира эмпирического становления.

Поэтому, согласно Платону, математика служит подготовкой мышления к постижению идей, которое осуществляется с помощью науки, стоящей выше математики, а именно диалектики. Математическое познание как бы посредине между «мнением», опирающимся на чувственное восприятие, и высшей формой знания — диалектикой, или философией. Поэтому Платон придавал большое значение математической подготовке своих учеников. «Не геометр — да не войдет» — гласила надпись у входа в Академию. Именно Платон впервые осуществил философскую рефлексию по отношению к числу и пришел к выводу, что оно имеет другой онтологический статус, чем чувственные вещи. После Платона стало уже невозможно говорить о том, что вещи состоят из чисел, не раскрывая смысла слова «состоят». Вот что по этому поводу говорит Аристотель: «Он (Платон. — П.Г.) полагает числа отдельно от чувственных вещей, а они (пифагорейцы. — П J1.) говорят, что числа — это сами вещи, и математические объекты в промежутке между теми и другими не помещают. Установление единого и чисел отдельно от вещей, а не так, как у пифагорейцев, и введение идей произошло вследствие исследования в области понятий (более ранние философы к диалектике не были причастны...)»7.

Говоря здесь о диалектике, Аристотель имеет в виду именно критическую рефлексию, размышление о природе самих понятий, чего действительно не было у философов-досократиков. Платоновский идеализм, таким образом, обязан своим возникновением не в последнюю очередь тому, что Платон пытался осмыслить процедуру идеализации как способа образования математических понятий

-297-

и пришел к необходимости допустить существование некоторого идеального мира, в котором обитают и числа. Тут, однако, следует оговорить, что в греческой математике число мыслилось совершенно иначе, чем в математике Нового времени8; для пифагорейцев, а также для Платона «действия и сущность числа должно созерцать по силе, заключающейся в декаде »д. Строго говоря, для Платона, как и для математиков-пифагорейцев его эпохи, числа — это числа до десяти, причем единица числом не является10. Эта оговорка существенна для адекватного понимания учения Платона об идеальной природе числа.

Как мы уже отмечали выше, понимание чисел как идеальных образований послужило логико-теоретической базой для греческой математики, прежде всего для Евклида11. Однако если это справедливо по отношению к VII книге «Начал», посвященной арифметике, то дело обстоит не так однозначно по отношению к геометрической алгебре, имеющей дело не с числами, ас геометрическими объектами. Последние образуются, по Платону, из чисел (которые суть идеальные образования) и некоторой материи — вот почему они могут быть квалифицированы как промежуточные вещи.