3. Неокантианское понятие числа
Понятие числа, согласно Кассиреру и Наторпу, лежит в основе всякого научного, т. е. строгого и точного, знания. «В идее о числе, — пишет Кассирер, — кажется заключенной вся сила знания, вся возможность логического
-376-
определения чувственного. Нельзя было бы постичь ничего о вещах, ни в их отношении к самим себе, ни в отношении к другим вещам, если бы не было числа и его сущности»53. Именно потому, что понятие числа рассматривается неокантианцами в качестве важнейшего фундамента науки, они склонны датировать возникновение науки в собственном смысле слова, как это было принято, с пифагорейцев. Здесь неокантианцы полностью разделяют убеждение Канта, что «учение о природе будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в нем математика»64.
Как мы уже видели, в своей логической концепции неокантианцы исходят из того, что определить понятие — значит рассмотреть его как исходный пункт некоторых суждений, как совокупность возможных отношений. Поэтому и определение понятия числа они связывают не с объектами — внешними или внутренними, а с самими актами установления отношений, с самой синтетической деятельностью познания. «Первое условие логического понимания числа, — пишет Наторп, — это понимание того, что тут речь идет не о данных вещах, а о чистых закономерностях мышления»55. Но что такое мышление, если рассмотреть его не с психологической, а с логической точки зрения? Это, говорит Наторп, только полагание отношения, и ничего больше66. Вместе с самим отношением полагаются и термины отношения. Всякое отношение требует установления терминов, поначалу хотя бы двух. «Термины различаются: то, к чему имеет место отношение, становится предшествующим, оно мыслится как основа отношения, оно должно быть положено, чтобы в отношении к нему могло быть положено Другое, которое мыслится как последующее, позднейшее. Следовательно, отношение необходимо включает основоположение и противоположение»67.
В сущности, этот основной акт полагания и лежит в основе числового ряда. Вот та простая мыслительная операция, которая составляет его логическую основу: «Пусть дано отношение Р к О, где Р — основной член, а О — противочлен; тогда в новом отношении О может стать основным членом, требующим следующего члена в качестве противочлена, например Q; и это не потому, что весь
-377-
ряд этих членов уже принимается как данный (как это имеет место в случае алфавита), а потому что все члены впервые полагаются все время одинаково повторяющимся отношением»68. Результатом такого полагания оказывается ряд, бесконечно продолжающийся в обе стороны, в котором каждый член является противочленом по отношению к предшествующему и основным членом по отношению к следующему. Неокантианцы показывают, что такого рода ряд уже задает основной тип всех тех предметов, с которыми имеет дело арифметика. Наторп предпринял специальное исследование, в котором из этой основы развил понятия сложения и вычитания, умножения и деления, понятия положительных и отрицательных, целых и дробных чисел69.
При этом Наторп и Кассирер опираются на теорию числа Дедекинда, который, по мнению Кассирера, среди математиков наиболее близко подошел к пониманию числа как мыслительной конструкции60. Действительно, некоторые положения работы Р. Дедекинда «Чем являются и чем должны быть числа?» очень близки к неокантианской концепции числа. Так, например, Дедекинд пишет: «Если при рассмотрении просто бесконечной системы N, упорядоченной через отображение ср, совершенно отвлекаются от особенных свойств элементов и имеют в виду лишь их различимость и те отношения, в которые они стали друг к другу благодаря упорядочивающему отображению Ф, то эти элементы называются натуральными числами, или порядковыми числами, или просто числами, и основной элемент 1 называется основным числом числового ряда N. С точки зрения этого освобождения элементов от всякого другого содержания (абстракции) можно с полным правом назвать числа свободным творением человеческого духа. Отношения или законы, которые... во всех упорядоченных просто бесконечных системах всегда одни и те же, какие бы случайные имена ни носили отдельные элементы, образуют ближайший предмет науки о числах, или арифметики»61. Нельзя не заметить, правда, что Дедекинд все-таки исходит, в отличие от неокантианцев, из традиционного взгляда, согласно которому существует некоторое множество вещей, независимых от творческого акта духа, от содержания которых математика абстраги
-378-
руется. Но коль скоро путем абстрагирования от «особенных свойств элементов» получен натуральный ряд чисел, их можно рассматривать как свободное творение человеческого духа, поскольку теперь порядок и связь между ними заключается не в элементах самих по себе, а в отношении ряда, которым они связаны. Как говорит Кассирер, «методическим преимуществом науки о числах оказывается как раз то, что в ней оставляется без рассмотрения "что" элементов, образующих некоторую определенную поступательную связь, и рассматривается лишь "как" этой связи»62.
Как уже можно догадаться на основании изложенного, неокантианцы выводят количественное число из порядкового. Они опираются при этом опять-таки на Р. Дедекинда, а также на Г. Гельмгольца и Л. Кронекера, развивавших порядковую теорию арифметики. Сущность порядковой теории, как она представлена, например, у Дедекинда, можно сформулировать следующим образом. Любую конечную систему можно соотнести с числовой совокупностью, установив при этом однозначное соответствие между каждым элементом системы и одним членом совокупности чисел. Поскольку порядок числовой совокупности установлен как неизменный, то всегда есть возможность установить однозначное соответствие между последним элементом системы и некоторым порядковым числом п. Это число п, которое является порядковой характеристикой последнего элемента системы, можно рассматривать как характеристику всей системы: тогда оно получает название количественного числа, а о системе теперь можно сказать, что она состоит из п элементов63. Гельмгольц, тоже предлагавший порядковую теорию арифметических чисел, при этом заявлял, что рассмотрение количественных чисел не приводит ни к каким новым свойствам и отношениям, которых нельзя было бы вывести из рассмотрения одного только порядка. Никакого нового математического содержания при переходе от порядковых чисел к количественным, по Гельмгольцу, не возникает64.
Неокантианцы, разделяя эту теорию арифметического числа, не согласны, однако, с тем, что при образовании количественного числа не возникает новых отношений, т. е. нового содержания. Возражая Гельмгольцу, Кассирер пи
-379-
шет: «Но нельзя не видеть, тем не менее, того, что в образовании количественного числа сказывается новая логическая функция. Если в теории порядкового числа были установлены единичные акты как таковые и развиты в виде однозначной серии, то теперь поднимается требование рассмотреть ряд не в его отдельных элементах, один за другим, но как идеальное целое. Предыдущий момент не просто должен быть вытеснен последующим, но должен сохраниться в нем по всему своему логическому значению, так что последний акт процедуры охватывает в себе зараз и все предшествующие ему акты и закон их взаимной связи»65.
Это возражение Кассирера имеет важную для неокантианской теории математического знания подоплеку. Дело в том, что некоторые сторонники порядковой теории числа, прежде всего Гельмгольц, давали ей номиналистическое обоснование. Так, Гельмгольц, например, рассматривает «порядок» как нечто такое, что можно вскрыть непосредственно в чувственных впечатлениях. Такая точка зрения предполагает, что .имеются налицо определенные группы предметов и задача мышления сводится только к тому, чтобы установить для них соответствующие различные обозначения, знаки. Подобно тому как мы отличаем вещи одну от другой, мы должны иметь возможность различать и знаки — по их внешней, данной чувственному восприятию, форме. Гельмгольц потому и не склонен усматривать в количественном числе ничего нового по сравнению с порядковым, ибо в этом случае пришлось бы признать содержание, которому невозможно найти чувственного аналога, помимо того, что уже найден для порядкового числа. Возражая Гельмгольцу, Кассирер тем самым подчеркивает, что знаки надо рассматривать не в соответствии с тем, что они представляют собой чувственно, а в соответствии с тем, что они означают мысленно.
В своей критике номинализма и впоследствии формализма при обосновании математики Кассирер ссылается на Фреге, который «в проницательной и обстоятельной критике показал, что арифметика знаков может существовать потому лишь, что она остается неверной самой себе. В процессе логического развития на место пустых символов становится незаметно содержание арифметических понятий»66.
-380-
Как видим, неокантианцы не просто присоединяются к математикам, разделяющим концепцию порядкового числа как «первичного» по сравнению с количественным: и Кассирер, и Наторп разделяют эту концепцию при условии ее логического обоснования, исключающего эмпирическое истолкование самого «порядка». И у Дедекинда, и у Кронекера, а особенно у Гельмгольца теория порядкового числа носит номиналистический характер; неокантианцы же стремятся освободить ее от номинализма, настаивая на том, что «порядок», о котором идет речь, представляет собой идеальную, мысленную конструкцию.
Принимая таким образом порядковое число как исходное, а количественное — как результат логического преобразования порядкового, неокантианцы выступают против попытки построить теорию числа, исходя из количественного числа как первичного и основного. В конце XIX — начале XX вв. такая попытка предпринималась математиками, стремившимися свести понятие о числе к понятию о классе. Если с точки зрения порядковой теории отдельное число никогда не является чем-то самим по себе, а получает свое значение лишь по тому месту, которое оно занимает в системе чисел, т. е. определяется отношением к системе в целом, то с точки зрения количественной теории, сводящей понятие о числе к понятию о классе, значение чисел должно быть дано до этого порядка и независимо от него. Члены числового ряда определяются здесь как общее свойство известных классов, и лишь по их значению устанавливается определенный порядок их следования друг за другом. К такому обоснованию числа склонялись многие математики, в их числе Г. Фреге, Б. Рассел и др.