Против такого способа обоснования математического знания неокантианцы выступают потому, что при подобном подходе «вся чистая математика превращается в простую игру»86. Гильберт, по их убеждению, воспроизводит в современной математике постулаты крайнего номинализма, терминизма, как он существовал в Средние века. Если Рассел и Фреге в своей попытке обосновать теорию числа с помощью понятия «класса» становятся на позиции, близкие к средневековому реализму, то Гильберт, рассматривающий математику как науку о знаках86, не имеющих никакого самостоятельного «смысла», становится на позиции номинализма. Оба эти направления от
-390-
вергаются кантианцами, позиция которых может быть определена, — коль скоро мы уже прибегли к этой традиционной терминологии, — как концептуализм.
Здесь, однако, необходимо пояснение. Спор неокантианцев с Гильбертом отчасти неправомерен, и вот почему: у Гильберта речь идет об обосновании, а не понимании математики; Гильберт различает эти два момента; неокантианцы же, напротив, стремятся к тому, чтоб обоснование (формальный момент) и понимание (момент содержательный) совпадали между собой. Они требуют, иначе говоря, не формального, а содержательного обоснования математики. Поэтому их критика в адрес Гильберта направлена не против Гильберта как математика, а против него как ее обоснователя.
Кассирер упрекает Гильберта в том, что тот «на место объективного познания вводит конвенциональные правила игры. Для интуиционистов в математических символах выражается основное направление и свойство человеческого интеллекта, а для формалистов они—всего лишь «знаки на бумаге»87. Здесь Кассирер присоединяется к Вейлю, которого не удовлетворяет формализм Гильберта, поскольку последний лишает математические символы какого бы то ни было значения. Сам Вейль считает, что если математика хочет быть «серьезным культурным делом», то с «игрой формул», о которой говорит Гильберт, должен быть связан некоторый смысл88.
Но где тогда искать ту «запредельную» по отношению к математическим символам сферу, которая должна составлять смысл, значение этих символов? «Я не нахожу ее (эту сферу. — П.Г.), — пишет Вейль, — если полностью не сливаю математику с физикой и не принимаю, что математические понятия числа, функции и т. д., или гильбертовы символы, принципиально таким же образом участвуют в теоретической конструкции действительного мира, как понятия энергии, гравитации, электрона и т. п.»89.
С критикой Вейля в адрес Гильберта Кассирер вполне согласен, но предложенный самим Вейлем способ интерпретации математических символов он не принимает, резонно возражая, что такая постановка вопроса упускает из виду все те разделы математики, содержание которых нельзя интерпретировать через сведение их к физической реаль
-391-
ности. Сюда Кассирер относит прежде всего область трансфинитных чисел. Кассирер считает, что само требование найти для символов в качестве обозначаемого ими предмета некоторую «потустороннюю» символам реальность, будь то реальность физического мира или реальность метафизическая, — такое требование приводит современную математику и вообще современную науку в тупик. Методологические проблемы научного знания, по Кассиреру, не будут удовлетворительно решены до тех пор, пока символ или знак будут, в соответствии с номиналистической, а равно и реалистической (в средневековом смысле этих терминов) традицией, рассматриваться дуалистически. «Символическое, — пишет Кассирер, — никогда не принадлежит «посюстороннему» или «потустороннему», «имманентному» или «трансцендентному», — его значение состоит именно в том, чтобы преодолеть эти противоположности, возникшие на почве метафизической теории двух миров... Если теперь мы обратимся к сфере математического, то увидим, что и здесь снята альтернатива — считать ли символы математики чистыми знаками, наглядными фигурами, лишенными смысла, или придать им трансцендентный смысл, который можно постигнуть только с помощью метафизической или религиозной «веры». В обоих случаях мы проглядели бы их истинное значение. Последнее состоит не в том, что они «суть» в себе, и не в том, что они «отображают», а в некоторой специфической направленности самого идеального образования, — не во внешнем объекте, на который они направлены, а в самом способе объективирования»90.
Таким образом, согласно Кассиреру, математика — это особый способ интеллектуального конструирования предмета; для нее не надо искать никаких коррелятов в мире физического бытия, так же как и в метафизическом, потустороннем мире. Какой бы то ни было способ «расшифровки» математических символов путем обращения к предмету, внешнему самой математике, не возможен и не нужен. Объективное значение математики состоит, по Кассиреру, не в том, что она имеет корреляты в физическом мире, а в том, что она сама строит этот мир в соответствии с объективными законами самого мышления и тем самым впервые создает условия для того, чтобы можно было пости
-392-
гать закономерности этого мира с помощью естественных наук — прежде всего математической физики. В этом смысле математика является как бы посредницей между логикой, с одной стороны, и эмпирическими науками (физикой, механикой и т. д.) — с другой.
Поэтому нет надобности соотносить математические понятия с некоторой «абсолютной» действительностью вещей, — соотносить можно только математическую форму познания с формами познания логики и физики. «И результат этого сравнения, — пишет Кассирер, — состоит в том, что никакая из этих форм не существует сама по себе, а только во взаимной связи они строят сферу объективно-теоретического значения и имеют объективное бытие»81.
Такая позиция неокантианцев как бы претендует на «средний путь» между интуиционизмом и формализмом. Действительно, Кассирер, подводя итог своему рассмотрению этих двух направлений, замечает, что «с точки зрения теории познания формализм и интуиционизм не исключают друг друга. Ибо то, что в чистой интуиции понимается по своему значению, должно быть утверждено и сохранено благодаря процессу формализации...»92. Такое «объединение» этих двух направлений в математике есть по существу предложение некоторого третьего пути, при котором интуитивное познание и символическое не отрывались бы друг от друга, а, напротив, были бы неразрывно связаны. Интуитивное мышление, понятое как идеальное конструирование предмета, освобожденное от психологических аберраций интуиционизма, должно строить фундамент математического знания, а символическое, которое не может быть в принципе оторвано от интуитивного, а должно время от времени обращаться к своему фундаменту для содержательной интерпретации смысла знаков, призвано обеспечивать прочность и оформленность всей постройке. Таковы функции обоих моментов — интуитивного и символического — в процессе познания.
Ставя вопрос о преодолении односторонности как интуиционизма, так и формализма, неокантианцы считают целесообразным обратиться к тому обоснованию математики, которое в свое время было дано Лейбницем. Именно Лейбниц, как подчеркивает Кассирер, никогда не отрывал друг от друга интуитивную и символическую функции по
-393-
знания. «Интуитивное познание, согласно Лейбницу, — пишет он, — создает основы математики, символическое же заботится о том, чтобы, исходя из этих основ, провести непрерывную цепь доказательств к следствиям. На этом пути мышление не нуждается в постоянном обращении к идеальному положению вещей: на место операций с «идеями» ставятся операции со знаками. Но в конце концов в определенном пункте встает вопрос о «смысле» знака: нужна содержательная интерпретация того, что выражено в знаке. Лейбниц уподобляет математический символизм подзорной трубе или микроскопу: они усиливают зрение человека, но не заменяют его»93.
Усмотреть «смысл» знака — это не значит, конечно, как уже пояснял Кассирер, обратиться к чему-то внешнему по отношению к самому математическому мышлению — к эмпирическим или «идеальным» вещам; это значит только не терять из виду и постоянно вновь и вновь восстанавливать непрерывную линию самой конструирующей деятельности мышления, направленность самого идеального образования понятий,.— и тогда связь «знака» с «обозначаемым» не будет упущена. При таком подходе, как легко догадаться, отнюдь не всякой комбинации знаков соответствует логически определенное математическое образование: если той или иной знаковой комбинации не соответствует определенное мыслительное действие («мыслительный шаг», как выражается Кассирер), то такая комбинация не должна претендовать на то, что ей соответствует некоторый математический предмет.
В этом важнейшем вопросе, касающемся обоснования математики, неокантианцы, как мы видим, отходят от принципов Канта и становятся на позиции Лейбница. В отличие от Канта, у которого математика имеет обязательным условием созерцание, у Лейбница математика и логическое мышление оказываются на одной стороне, а чувственность (созерцание) выступает в роли системы знаков; хотя без знаков математика не может обойтись, но свое содержание она получает не из чувственности, а из чистого мышления. Неокантианцы потому и подвергли критике кантовское учение об априорных условиях чувственности, что они вслед за Лейбницем не считают возможным допустить, что математика черпает из чувственности (пусть да
-394-
же из априорных ее форм) свое содержание. Чувственность — знак — есть лишь средство выражения интеллектуального содержания, а не условие его получения.
Как мы уже отмечали, неокантианскую позицию в целом можно охарактеризовать как концептуализм, или, лучше, неоконцептуализм, хотя и не без некоторых оговорок. Одна из них — существенное изменение общелогической позиции неокантианцев по сравнению с классическим средневековым концептуализмом, представители которого не создавали логику отношений, а пользовались классической аристотелевской логикой «родовых понятий». Но если иметь в виду, что классический концептуализм в отличие от реализма, считавшего общее существующим «до» единичного, а также номинализма, согласно которому общее существует «после» единичного, утверждал, что общее существует «в» единичном, то неокантианскую теорию познания вполне можно сравнить именно с классическим концептуализмом. В самом деле, общее (т. е. принцип построения ряда), согласно Когену, Наторпу и Кассиреру, не существует иначе, как в самом акте построения ряда; члены ряда и принцип его построения связаны между собой коррелятивно: одно без другого представить невозможно.