11. Для каких целей в паросиловой установке используют вторичный перегрев пара?
12. Объясните работу регенеративного цикла паросиловой установки с помощью ts-диаграммы.
13. Приведите описание бинарного цикла.
14. Что такое внутренний относительный к. п. д. паросиловой установки и как его определяют?
15. В чем преимущество комбинированной выработки теплоты и электроэнергии? 16. Как определяют удельный расход пара в паросиловой установке?
17. Как определяют эффективный к. п. д. паросиловой установки?
18. В чем сущность парогазового цикла?
1.10. Прямые преобразователи энергии
Программа
Общие понятия о солнечных теплогенераторах, солнечных электрических парогенераторах. Лазерные теплогенераторы. Циклы установок с магнитогидро-динамическими генераторами.
Методические указания
Рассматриваемая тема посвящена новым источникам получения тепловой и электрической энергии. В связи с истощением запасов органических ископаемых, используемых в качестве топлива для получения теплоты и электроэнергии, в СССР с середины XX в. начинается быстрое развитие новой энерготехники. Создаются энергоустановки, позволяющие вырабатывать электроэнергию: топливные элементы, термоэлектрогенераторы магнитогазодинамические электрогенераторы, солнечные электрогенераторы. Интенсивно ведутся работы по теплофикационному использованию солнечной энергии, использованию термоядерной реакции для получения тепловой и электрической энергии.
Большое значение придается использованию низкотемпературной плазмы для получения электроэнергии. Следует знать, что магнитогидродинамический (МГД) генератор основан на принципе движения ионизированного потока газа (при высокой температуре) между полюсами сильного электромагнита. Более детальный анализ работы установок по прямому преобразованию энергии рассматривается в части HHH, посвященной теплоэнергетическим установкам.
Литература: [1], с. 287—290.
Вопросы для самопроверки
1. Каковы новые методы получения тепловой и электрической энергии?
2. Каким образом можно использовать энергию Солнца для получения электроэнергии?
3. Можно ли использовать солнечную энергию для работы электрических парогенераторов?
4. Приведите определение понятия низкотемпературной плазмы.
5. На каком принципе основана работа магнитогидродинами-ческих генераторов?
1.11 Циклы холодильных машин, теплового насоса и
термотрансформаторов (обратные термодинамические циклы)
Программа
Основные понятия о работе холодильных установок. Классификация холодильных установок. Понятие о холодильном коэффициенте и холодопроизво-дительности. Циклы воздушных, пароэжекторных и абсорбционных холодильных установок. Принципиальные схемы установок и изображение циклов в pv-и Ts-диаграммах. Цикл паровой компрессорной холодильной установки, принципиальная схема и изображение цикла в Ts-диаграмме. Общие понятия о глубоком охлаждении. Принципиальная схема теплового насоса. Понятие о коэффициенте теплоиспользования. Требования, предъявляемые к рабочим телам холодильных установок.
Методические указания
В этой теме студент изучает термодинамические основы холодильных установок, осуществляющих производство холода. Вопросы, рассматриваемые в данной теме, представляют большой практический интерес для будущих инженеров-технологов. Холодильные установки работают по обратному циклу. Знание классификации и принципиальных схем холодильных установок позволяет правильно выбирать соответствующий тип холодильной установки при расчете охлаждения. Несмотря на то, что воздушные холодильные установки в промышленности используют редко, изучение схемы и принципа действия такой установки позволит студенту изучить термодинамические основы холодильного цикла. Усвоив учебный материал темы, студент сможет анализировать с помощью Ts-диаграммы работу холодильных циклов, определять холодильные коэффициенты и холодопроизводительность установок. Особое внимание обратить на работу паровой компрессорной холодильной установки, получившей наибольшее распространение в промышленности. Уяснить принципиальное отличие паровых компрессорных установок от воздушных. Запомнить, что в паровой компрессорной холодильной установке не применяется расширительный цилиндр (детандер), а рабочее тело дросселируется в регулировочном вентиле. Несмотря на то что это приводит к потере холодопроизводительности, замена упрощает установку и дает возможность легко регулировать давление пара и получать низкую температуру в охладителе. По обратному циклу работают не только холодильные машины, но и тепловые насосы, в которых теплота, забирваемая от окружающей среды, с помощью затраченной работы повышает энергетический уровень рабочего тела и при более высокой температуре отдается внешнему потребителю. Уяснить понятие коэффициента теплоиспользования и разобрать принципиальную схему и работу теплового насоса.
Литература: [1], с. 290—302.
Вопросы для самопроверки
1. Какие машины называются холодильными? 2. Назовите отрасли промышленности, в которых большое применение находят холодильные установки. 3. Как классифицируются холодильные установки? 4. Чем отличается холодильная установка от теплового двигателя? 5. Что называется холодильным коэффициентом? 6. Приведите определение понятия «холодопроизводительность». 7. Приведите принципиальную схему воздушной холодильной установки и описание ее работы. 8. Изобразите идеальный цикл воздушной холодильной установки в pv- и Ts-диаграммах. 9. Принцип работы пароэжекторных холодильных установок. 10. Объясните понятие «абсорбция». 11. Приведите принципиальную схему абсорбционной холодильной установки и описание ее работы. 12. Почему наибольшее распространение получили паровые компрессорные холодильные установки? 13. Приведите принципиальную схему работы паровой компрессорной установки и описание ее работы. 14. Чем отличается работа теплового насоса от работы холодильных установок?
2 ТЕОРИЯ ТЕПЛО- И МАССООБМЕНА
2.1 Основные понятия и определения
Программа
Предмет и основные задачи теории. Место этой дисциплины в подготовке инженера-технолога. Основные понятия и определения. Виды распространения теплоты: теплопроводность, конвекция и тепловое излучение. Сложный теплообмен. Понятие о массообмене.
Методические указания
При изучении термодинамики студент не получал никаких указаний на то, каков механизм отвода теплоты от горячего тела к холодному. Теория теплообмена, наоборот, все внимание концентрирует на способах передачи теплоты, раскрывая механизм и физическую сущность их различных видов, и дает оперативные зависимости для расчета параметров как отдельных видов теплообмена, так и их совокупности, называемой сложным теплообменом.
Необходимо понять и запомнить такие основные понятия, как температурное поле, градиент температуры, передаваемая теплота, тепловой поток, поверхностная плотность теплового потока, линейная плотность теплового потока.
Уяснить, что рассмотрение отдельных видов теплообмена, таких, как теплопроводность, конвекция и излучение, является методологическим приемом, вызванным сложностью реального теплообмена, в котором, как правило, одновременно участвуют все перечисленные выше виды распространения теплоты.
Литература: [1], с 306—309.
1. Что такое температурное поле? каковы виды температурного поля?
2. Что такое передаваемая теплота, тепловой поток и поверхностная плотность теплового потока? в каких единицах они выражаются?
3. Что такое температурный градиент, каково его направление и в каких единицах он выражается?
4. На каком законе термодинамики базируется теория теплообмена?
5. Какая разница между поверхностной плотностью теплового потока и линейной плотностью теплового потока?
6. Что такое теплопроводность, конвекция и излучение? каков механизм каждого из этих видов теплообмена?
2.2 Распространение теплоты теплопроводностью
Программа
Основной закон теплопроводности (закон Фурье). Теплопроводность, Дифференциальное уравнение теплопроводности. Условия однозначности. Теплопроводность различных стенок при стационарном режиме. Граничные условия H рода. Определение теплопередачи через стенки. Граничные условия ИТ рода. Коэффициент теплопередачи. Пути интенсификации процесса теплопередачи. Правило выбора материала теплоизоляции. Основные сведения о нестационарной теплопроводности.
Методические указания
Нужно понять значение закона Фурье для решения задач стационарной теплопроводности. Усвоить, что физически теплопроводность представляет собой процесс распространения теплоты путем теплового движения микрочастиц вещества без визуально наблюдаемого перемещения самих частиц. Явление теплопроводности имеет место в твердых телах, неподвижных жидких и газообразных веществах. Если происходит движение жидкости или газа, то теплопроводность в чистом виде имеет место в весьма тонком неподвижном слое, прилегающем к поверхности твердого тела.
Уяснить назначение и состав условий однозначности при решении задач теплообмена. Понять влияние рода граничных условий на решение уравнения теплопроводности при стационарном режиме. Разобраться, как, применяя граничное условие H рода, получают решение по распространению температуры внутри тела, а применяя граничное условие HHH рода, получают решение по передаче теплоты от горячего носителя к холодному через разделяющую их стенку (теплопередача).