Конечная цель решения задач стационарной теплопроводности — определение теплового потока, т. е. количества теплоты, передаваемой, за 1 с. Надо понимать разницу между линейной и поверхностной плотностями теплового потока, а также между коэффициентом теплопередачи и линейным коэффициентом теплопередачи. Разобраться в способах интенсификации теплопередачи, а также в том, как надо правильно подбирать материалы теплоизоляции цилиндрического теплопровода. Понять, почему критерии Bh и Fo определяют нестационарную теплопроводность при нагревании и охлаждении тела.
Литература: [1], с. 309—322, 326—332, 339.
Вопросы для самопроверки
1. Что понимают под явлением теплопроводности? 2. Напишите уравнение теплопроводности Фурье. Объясните физический смысл входящих в него величин. 3. Каковы границы изменения теплопроводности для металлов, изоляционных и строительных материалов, жидкостей и газов? 4. От чего зависит теплопроводность? 5. Чем отличаются условия однозначности для стационарного и нестационарного режимов теплопроводности? 6. В чем отличие граничных условий H и HHH рода и к чему приводит это отличие при решении уравнений теплопроводности? 7. Напишите выражение теплового потока для теплопроводности через плоскую однослойную и многослойную стенки. 8. Напишите выражение теплового потока для теплопроводности через цилиндрическую однослойную и многослойную стенки. 9. Почему необходимо отличать поверхностную плотность теплового потока от линейной при рассмотрении теплопроводности через стенки трубы? 10. Что такое теплопередача и чем она отличается от теплопроводности? 11. Что называется термическим сопротивлением теплопередачи? 12. Что может происходить при неправильном выборе материала теплоизоляции цилиндрического теплопровода? какое существует правило выбора теплоизоляции для этого случая? 13. Для чего стремятся интенсифицировать теплопередачу и какие для этого существуют пути? 14. Как влияет материал плоской стенки на перепад температур наружной и внутренней поверхностей стенки при теплопередаче?
2.3 Конвективный теплообмен
Программа
Физическая сущность конвективного теплообмена. Формула Ньютона — Рихмана. Коэффициент теплоотдачи. Основы теории подобия. Гидродинамическое и тепловое подобие. Критерии подобия и принцип их получения. Критериальное уравнение конвективного теплообмена. Определяющие и определяемые критерии подобия. Определяющая температура и определяющий линейный размер. Теплообмен при вынужденном движении жидкости или газа в трубах н каналах. Теплооомен при вынужденном поперечном омывании труб. Теплообмен при свободном движении жидкости. Теплообмен при изменении агрегатного состояния вещества.
Методические указания
При решении задачи стационарной теплопроводности при граничных условиях HHH рода в полученное решение для уравнения теплопередачи входят коэффициенты теплоотдачи , характеризующие теплообмен между теплоносителями и твердой стенкой. В этой задаче численные значения считаются заданными.
Основная задача теории конвективного теплообмена — разработка зависимости для расчета коэффициента теплоотдачи α. Опыт преподавания показывает, что этот раздел теории тепло- и массообмена является наиболее трудным.
Для того чтобы уяснить, как вычислить α, нужно внимательно изучить материал учебника, в котором разбирается физическая сущность конвективного теплообмена на основе теории Прандтля. Коэффициент теплоотдачи α учитывает тепловое взаимодействие жидкости (или газа) и твердого тела. Поэтому α зависит от большого числа факторов. Существенный момент независимо от режима течения теплоносителя — конечный акт передачи теплоты теплопроводностью в тонком неподвижном слое жидкости (или газа), прилегающем к стенке. В случае ламинарного движения теплота от ядра потока к стенке передается теплопроводностью. В случае турбулентного потока «питание» теплотой ламинарного неподвижного подслоя осуществляется турбулентно перемещающимися макрочастицами теплоносителя. Совместное действие конвекции и теплопроводности называют конвективным теплообменом. Студент должен понять, что система четырех дифференциальных уравнений второго порядка в частных производных, описывающих конвективный теплообмен, совместно с условиями однозначности в принципе позволяют в результате строгого решения получить величину коэффициента теплоотдачи α. Однако практически при решении этой системы уравнений встречаются непреодолимые математические трудности. С другой стороны, экспериментальное определение величины α на натурном объекте экономически нецелесообразно, так как необходимо провести очень большое число опытов для определения влияния на а каждого из факторов. При этом полученный результат будет пригоден только для объекта, на котором проводится эксперимент.
Теория подобия допускает проведение опытов не на натурном объекте, а на его модели, а результаты опыта позволяют распространять на все подобные явления. Кроме того, базируясь на системе дифференциальных уравнений конвективного теплообмена, теория подобия четко определяет условия подобия физических явлений и процессов. Теория подобия — теория эксперимента. Нужно хорошо разобраться в материале учебника, посвященном основам теории подобия, и понять суть трех теорем подобия. Усвоить принцип получения критериев подобия конвективного теплообмена из дифференциальных уравнений, описывающих этот процесс. Запомнить, что определяющие критерии стационарного конвективного теплообмена (Re, Pr, Gr) составлены нз параметров, входящих в условия однозначности, а определяемый критерий (Nu) наряду с параметрами, входящими в условия однозначности, включает в себя искомую величину коэффициента теплоотдачи α.
Понять значение второй теоремы подобия, позволяющей для подобных явлений записать общее решение системы дифференциальных уравнений конвективного теплообмена (не решая ее) в виде функции критериев подобия вида
. Уравнение получается строго теоретически на основании теории подобия. Для перехода к практике допускают, что полученное общее решение может быть записано в видегде
— коэффициенты, определяемые на основе экспериментальных данных.Последнее выражение представляет собой критериальное уравнение (уравнение подобия) в самом общем виде. Это уравнение является полуэмпирическим, так как оно получено на основе общих теоретических соображений, а коэффициенты, входящие в него, находятся из опыта. Имея уравнение подобия, находят определяемый критерий Nu, а по нему искомое значение коэффициента теплоотдачи
. После того как найден коэффициент теплоотдачи а, нетрудно рассчитать тепловой поток по формуле Ньютона — Рихмана.Для условий теплообмена общее критериальное уравнение упрощается, например, при вынужденном движении жидкости по трубе
и а при свободной конвекции . Понять необходимость введения в критериальное уравнение множителя который учитывает влияние на критерии Nu, а следовательно, и на а направления теплового потока при теплоотдаче (нагревание или охлаждение жидкости). Учитывая изложенное, нужно четко уяснить физический смысл основных критериев (Nu, Pr, Gr, Re) и применять при расчетах те критериальные зависимости, которые соответствуют конкретному виду задачи.Литература: [1], с. 348—385, 388—391, 394—401.
Вопросы для самопроверки
1. Что такое свободная и вынужденная конвекция? 2. Что такое динамический пограничный слой и тепловой пограничный слой? какая между ними связь? 3. Что называется конвективным теплообменом? 4. Сформулируйте основной закон теплоотдачи конвекцией. 5. От каких факторов зависит коэффициент теплоотдачи? в каких единицах его выражают? 6. В чем суть теории подобия? 7. В чем физический смысл критериев подобия? 8. Чем характеризуется критерий Nu? 9. Что называется критериальным уравнением (уравнением подобия)? 10. Что обозначают индексы у критериев, входящих в уравнение подобия? 11. Как отличить определяющие критерии от определяемых? 12. Какие основные формулы применяют для различных случаев конвективного теплообмена? 13. Что такое «кризис кипения»? 14. Какие факторы отрицательно влияют на теплообмен при конденсации водяного пара?
2.4 Теплообмен излучением
Программа
Основные понятия и определения. Основные законы теплового излучения. Теплообмен излучением между твердыми телами. Защита от теплового излучения. Тепловое излучение газов.
Методические указания
Нужно прежде всего уяснить принципиальную разницу между теплообменом излучением и двумя уже известными видами теплообмена—теплопроводностью и конвекцией.
В процессе теплообмена излучением происходит двойное превращение энергии — сначала внутренняя энергия превращается в энергию электромагнитных волн, которые, попадая на другое тело, вновь превращаются во внутреннюю энергию этого тела. Разобраться в количественном соотношении между поглощенной, отраженной и пропущенной сквозь тело энергией электромагнитного излучения.
Понимание этого вопроса позволит грамотно управлять тепловым излучением в нужном для практики направлении. Так, например, при защите объектов от лучистой энергии на пути ее распространения ставят экраны, максимально отражающие лучистую энергию. Наоборот, если необходим максимальный нагрев за счет лучистой энергии, объекту необходимо придать такие свойства, при которых осуществляется максимум поглощения лучистой энергии (покрытие краской, шероховатость и др.)- Для получения максимальной пропускающей способности лучистой энергии (например, света) необходимо выбрать стенку с соответствующими свойствами. Основные законы излучения и экспериментальные данные по свойствам отдельных тел дают возможность решать конкретные задачи, связанные с лучистым теплообменом. Поэтому студенту необходимо усвоить законы Планка, Вина, Кирхгофа, Стефана — Больц-мана, методику и границы их применения. Практически в теплообмене участвуют одновременно все три его вида, поэтому при решении конкретных задач нужно различать «весомость» того или иного вида теплообмена, с тем чтобы уметь сознательно упрощать решение задачи с допускаемой погрешностью.