Смекни!
smekni.com

Задачи искусственного интеллекта 7 Тест по теме «История развития искусственного интеллекта» 9 (стр. 24 из 24)

Фаззификацией (fuzzification) называется процедура преобразования четких значений в степени уверенности.

Нечетким логическим выводом называется получение заключения в виде нечеткого множества, соответствующего текущим значениях входов, с использованием нечеткой базы знаний и нечетких операций.

Нечеткой базой знаний называется совокупность нечетких правил "Если - то", определяющих взаимосвязь между входами и выходами исследуемого объекта. Обобщенный формат нечетких правил такой: Если посылка правила, то заключение правила.

Посылка правила или антецедент представляет собой утверждение типа "x есть низкий", где "низкий" - это терм (лингвистическое значение), заданный нечетким множеством на универсальном множестве лингвистической переменной x. Квантификаторы "очень", "более-менее", "не", "почти" и т.п. могут использоваться для модификации термов антецедента.

Заключение или следствие правила представляет собой утверждение типа "y есть d", в котором значение выходной переменной d может задаваться:

- нечетким термом: "y есть высокий";

- классом решений: "y есть бронхит"

- четкой константой: "y=5";

- четкой функцией от входных переменных: "y=5+4*x".

Нечеткая система - множество нечетких правил, преобразующих входные данные в выходные. В простейшем случае эксперт устанавливает эти правила, в более сложном, - например, нейросеть.

Нечеткое правило - условное высказывание вида «если X есть A, то Y есть B», где A и B нечеткие множества.

Основные определения по теме «Экспертные системы»

Экспертные системы – это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие эти знания для консультации менее квалифицированных специалистов.

Пользователь специалист предметной области, для которого предназначена си­стема. Обычно его квалификация недостаточно высока, и поэтому он нуждается в помощи и поддержке своей деятельности со стороны экспертной системы.

Инженер по знаниям специалист в области искусственного интеллекта, высту­пающий в роли промежуточного буфера между экспертом и базой знаний. Сино­нимы: когнитолог, инженер-интерпретатор, аналитик.

Интерфейс пользователя комплекс программ, реализующих диалог пользова­теля с ЭС как на стадии ввода информации, так и при получении результатов.

База знаний ядро ЭС, совокупность знаний предметной области, записан­ная на машинный носитель в форме, понятной эксперту и пользователю (обычно на некотором языке, приближенном к естественному). Параллельно такому «че­ловеческому» представлению существует БЗ во внутреннем «машинном» пред­ставлении.

Решатель программа, моделирующая ход рассуждений эксперта на основании знаний, имеющихся в БЗ. Синонимы: дедуктивная машина, машина вывода, блок логического вывода.

Подсистема объяснений программа, позволяющая пользователю получить от­веты на вопросы: «Как была получена та или иная рекомендация?» и «Почему система приняла такое решение?» Ответ на вопрос «как» — это трассировка всего процесса получения решения с указанием использованных фрагментов БЗ, то есть всех шагов цепи умозаключений. Ответ на вопрос «почему» — ссылка на умо­заключение, непосредственно предшествовавшее полученному решению, то есть отход на один шаг назад. Развитые подсистемы объяснений поддерживают и дру­гие типы вопросов.

Интеллектуальный редактор базы знаний программа, представляющая инженеру по знаниям возможность создавать БЗ в диалоговом режиме. Включает в себя систему вложенных меню, шаблонов языка представления знаний, подсказок и других сервисных средств, облегчающих работу с базой.

Решение – процесс и результат выбора способа и цели действий из ряда альтернатив в условиях неопределенности.

Приобретением знаний называется выявление знаний из источников и преобразование их в нужную форму, а также перенос в базу знаний ИС. Источниками знаний могут быть книги, архивные документы, содержимое других баз знаний и т. п., т. е. некоторые объективизированные знания, переведенные в форму, которая делает их доступными для потребителя.

Экспертные знания - знания, которые имеются у специалистов, но не зафиксированы во внешних по отношению к нему хранилищах. Экспертные знания являются субъективными.

Формализация. Процесс формализации знаний, полученных у эксперта, состоит из следующих шагов: выбор метода измерения нечеткости, получение исходных данных посредством опроса эксперта, реализация алгоритма построения функции принадлежности.

Интерпретация данных. Это одна из традиционных задач для экспертных сис­тем. Под интерпретацией понимается процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.

Диагностика. Под диагностикой понимается процесс соотнесения объекта с некоторым классом объектов и/или обнаружение неисправности в некоторой системе. Неисправность — это отклонение от нормы. Такая трактовка поз­воляет с единых теоретических позиций рассматривать и неисправность обо­рудования в технических системах, и заболевания живых организмов, и все­возможные природные аномалии. Важной спецификой является здесь необходимость понимания функциональной структуры («анатомии») ди­агностирующей системы.

Мониторинг. Основная задача мониторинга — непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы — «пропуск» тревож­ной ситуации и инверсная задача «ложного» срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость уче­та временного контекста.

Проектирование. Проектирование состоит в подготовке спецификаций на со­здание «объектов» с заранее определенными свойствами. Под спецификацией понимается весь набор необходимых документов — чертеж, пояснительная за­писка и т. д. Основные проблемы здесь — получение четкого структурного описания знаний об объекте и проблема «следа». Для организации эффектив­ного проектирования и в еще большей степени перепроектирования необхо­димо формировать не только сами проектные решения, но и мотивы их приня­тия. Таким образом, в задачах проектирования тесно связываются два основ­ных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.

Прогнозирование. Прогнозирование позволяет предсказывать последствия не­которых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из задан­ных ситуаций. В прогнозирующей системе обычно используется параметри­ческая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.

Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логичес­ки вывести последствия планируемой деятельности.

Обучение. Под обучением понимается использование компьютера для обуче­ния какой-то дисциплине или предмету. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказы­вают правильные решения. Они аккумулируют знания о гипотетическом «ученике» и его характерных ошибках, затем в работе они способны диагнос­тировать слабости в познаниях обучаемых и находить соответствующие сред­ства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.

Управление. Под управлением понимается функция организованной системы, поддерживающая определенный режим деятельности. Такого рода ЭС осуще­ствляют управление поведением сложных систем в соответствии с заданными спецификациями.

Оптимизация – нахождене решения, удовлетворяющего системе ограничений и максимизирующим или минимизирующим целевую функцию.

Основные термины по теме «Системы поддержки принятия решений»

Принятие решения – это особый вид человеческой деятельности, направленный на выбор лучшей из имеющихся альтернатив. Главной задачей, которую приходится разрешать при принятии решения, является выбор альтернативы, наилучшей для достижения некоторой цели, или ранжирование множества возможных альтернатив по степени их влияния на достижение этой цели.

Процесс принятия решений – получение и выбор наиболее оптимальной альтернативы с учетом просчета всех последствий. При выборе альтернатив необходимо выбирать ту, которая наиболее полно отвечает поставленной цели, но при этом приходится учитывать большое количество противоречивых требований и, следовательно, оценивать выбранный вариант решения по многим критериям.

Системы поддержки принятия решений (DSS, Decision Support System) являются человеко-машинными объектами, которые позволяют лицам, принимающим решения, использовать данные, знания, объективные и субъективные модели для анализа и решения слабо структурированных и неструктурированных проблем.

Хранилище данных – предметно-ориентированный. Интегрированный, неизменчивый, поддерживающий хронологию набор данных, организованный для целей поддержки принятия решений.

Витрина данных – упрощенный вариант хранилища данных, содержащий только тематически объединенных данные.

Витрина данных, секция данных (Data Mart) - база данных, функционально-ориентированная и, как правило, содержащая данные по одному из направлений деятельности организации. Она отвечает тем же требованиям, что и хранилище данных, но, в отличие от хранилища, нейтрального к приложениям, в витрине данных информация хранится оптимизировано с точки зрения решения конкретных задач.