Смекни!
smekni.com

Задачи искусственного интеллекта 7 Тест по теме «История развития искусственного интеллекта» 9 (стр. 4 из 24)

Эвристическое программирование

В рамках направления исследуют последовательности мыслительных операций, выполнение которых приводит к успешному решению той или иной задачи, моделируют мыслительную деятельность человека для решения задач, не имеющих строгого формализованного алгоритма или связанных с неполнотой исходных данных.

Искусственная жизнь

Направление исследований, целью которого является создание искусственных существ, способных действовать не менее эффективно, чем живые существа. Мягкая искусственная жизнь создает вычислительные системы и модели, действующие на базе биологических и эволюционных принципов. Влажная искусственная жизнь синтезирует новые искусственные биологические формы. В рамках этого направления используют генетические алгоритмы, клеточные автоматы, автономные агенты и т.д.

Когнитивное моделирование

Научное направление, являющееся плодотворным синтезом когнитивной графики и вычислительного моделирования, позволяющее существенно повысить познавательную эффективность современных ЭВМ. Методология когнитивного моделирования предназначена для анализа и принятия решений в плохо определенных ситуациях, основывается на моделировании субъективных представлений эксперта.

Эволюционное моделирование

При эволюционном моделировании процесс моделирования сложной социально-экономической системы сводится к созданию модели его эволюции или к поиску допустимых состояний системы, к процедуре (алгоритму) отслеживания множества допустимых состояний (траекторий).

Многоагентные системы

Направление искусственного интеллекта, которое рассматривает решение одной задачи несколькими интеллектуальными подсистемами – агентами. Агент – аппаратная или программная сущность, способная действовать в интересах достижения цели, поставленной перед всей системой.

Социальные системы дают еще одно модельное представление интеллекта с помощью глобального поведения, которое позволяет им решать проблемы, которые бы не удалось решить отдельным их членам. Агенты в таких системах автономны или полуавтономны, у каждого агента есть определенный круг подзадач, причем он располагает малым знанием (или вовсе не располагает знанием) о том, что делают другие агенты или как они это делают. Каждый агент выполняет свою независимую часть решения проблемы и либо выдает собственно результат (что-то совершает) либо сообщает результат другим агентам.

Онтологии

В рамках этого направления исследуется возможность всеобъемлющей и детальной формализации некоторой области знаний с помощью концептуальной схемы – иерархической структуры данных, содержащей все релевантные классы объектов, их связи и правила предметной области. Онтологии используются и людьми и программными агентами, позволяют повторно использовать знания предметной области, отделить их от оперативных знаний и анализировать их. Разрабатываются языки описания онтологий (RDF, DAML, OWL, KIF).

Компьютерные вирусы

Последнее поколение компьютерных вирусов обладают всеми атрибутами систем искусственного интеллекта. Они способны к размножение, мутации, эволюции, обучению. Современные проблемы по защите от них окажутся незначительными, когда они полностью проникнут в сферу искусственного интеллекта. Методы искусственного интеллекта необходимы как для их создания, так и для разработки эффективных средств защиты.

Интеллектуальное математическое моделирование

В данном направлении системы имитируют творческую деятельность математика-профессионала, занимающегося решением, например, краевых задач математической физики. Для этого используются базы знаний, содержащие теоремы, математические зависимости, эвристические правила, такие системы способны к обучению и самообучению.

Это далеко не все направления искусственного интеллекта, существует множество направлений для решения множества задач.

Тест по теме «Направления и подходы исследований в области искусственного интеллекта»

1. Какое из направлений не придает значения тому, как именно моделируются функции мозга?

a) нейрокибернетика

b) кибернетика черного ящика

c) нет правильного ответа

2. Какой подход использует Булеву алгебру?

a) структурный

b) имитационный

c) логический

d) эволюционный

e) нет правильного ответа

3. Какой язык программирования разработан в рамках искусственного интеллекта?

a) Pascal

b) C++

c) Lisp

d) OWL

e) PHP

4. Сколько поколений роботов существует?

a) 1

b) 2

c) 3

d) 4

5. Искусственная жизни имеет следующие направления?

a) мягкая

b) твердая

c) влажная

d) мокрая

e) сухая

f) нет правильного ответа

6. Какие задачи решаются в рамках искусственного интеллекта?

a) распознавание речи

b) принятие решений

c) кодирование

d) создание сред разработки информационных систем

e) создание компьютерных игр

f) нет правильного ответа

7. Экспертные знания активно используются в следующих направлениях?

a) экспертные системы

b) когнитивное моделирование

c) распознавание образов

d) компьютерная лингвистика

e) нет правильного ответа

8. Принцип организации социальных систем используется в направлении?

a) эволюционное моделирование

b) когнитивное моделирование

c) нейронные сети

d) нет правильного ответа

Литература по теме «Направления и подходы исследований в области искусственного интеллекта»:

1. Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. СПб.: Питер, 2001. с. 384.

2. Подходы к построению систем искусственного интеллекта. http://ai.obrazec.ru/podhody.html

3. Рассел С., Норвиг П. Искусственный интеллект: современный подход, 2-е изд. – М.: Вильямс, 2006. - с. 1408.

4. Ясницкий Л.Н. Введение в искусственный интеллект. - М.: Издательский центр «Академия», 2005. – 176 с.

§3. Классификация интеллектуальных информационных систем

Определение интеллектуальной информационной системы

Существует большое множество интеллектуальных информационных систем. Однако общепринятого единого определения интеллектуальной информационной системы нет.

Интеллектуальной информационной системой называют автоматизированную информационную систему, основанную на знаниях, или комплекс программных, лингвистических и логико-математических средств для реализации основной задачи - осуществления поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке.

Кроме того, информационно-вычислительными системами с интеллектуальной поддержкой для решения сложных задач называют те системы, в которых логическая обработка информации превалирует над вычислительной.

Таким образом, любая информационная система, решающая интеллектуальную задачу или использующая методы искусственного интеллекта, относится к интеллектуальным.

Для интеллектуальных информационных систем характерны следующие признаки:

- развитые коммуникативные способности.

- умение решать сложные плохо формализуемые задачи.

- способность к самообучению.

- адаптивность.

Коммуникативные способности ИИС характеризуют способ взаимодействия (интерфейса) конечного пользователя с системой, в частности, возможность формулирования произвольного запроса в диалоге с ИИС на языке, максимально приближенном к естественному.

Сложные плохо формализуемые задачи - это задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.

Способность к самообучению - это возможность автоматического извлечения знаний для решения задач из накопленного опыта конкретных ситуаций

Адаптивность - способность к развитию системы в соответствии с объективными изменениями модели проблемной области.

Классификация интеллектуальных систем

В соответствии с перечисленными признаками ИИС делятся на (рис. 1), данная классификация одна из возможных:

- системы с коммутативными способностями (с интеллектуальным интерфейсом);

- экспертные системы (системы для решения сложных задач);

- самообучающиеся системы (системы способные к самообучению);

- адаптивные системы (адаптивные информационные системы).

Рис.1 . Классификация интеллектуальных информационных систем по типам систем.

Интеллектуальные базы данных отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных.

Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так, морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль - разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ - установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое.