Смекни!
smekni.com

База знаний в области технологий и систем использования низкотемпературных и возобновляемых источников энергии (стр. 10 из 20)

Внедрение тепловых насосов позволяет снизить расходы топлива на единицу выработанной теплоты по сравнению с котельными от 20 до 50% либо обеспечить 3-4-кратную экономию электроэнергии по сравнению с прямым электроснабжением. Источники энергии для ТНУ находятся “непосредственно” у потребителей, что сокращает потери при передаче и сокращает расходы на содержание и строительство теплотрасс и т.п. Время возможной работы ТНУ совпадает со временем потребности потребителями в энергии.

Большинство рассмотренных в данной работе проектов разработаны и внедряются за рубежом, в то время как в нашей стране всё ограничилось несколькими демонстрационными проектами и предложениями, по большей части основанными на практически единственной ТНУ АТНУ-10 производства “Экомаш” (г. Саратов). Совершенно необходимо развивать работы в этом направлении с целью создания конструкций иного ряда современных ТНУ различного назначения

Экономические и экологические аспекты использования энергоустановок на базе тепловых насосов

Стоимость теплонасосной станции (ТНС) мощностью от 100 до 10000 кВт в странах Западной Европы составляет 600-700 долл/кВт, в то время как стоимость теплонасосов АО "Энергия" в том же диапазоне мощностей при приблизительно равной энергетической эффективности и сдаче объекта "под ключ" составляет 600-700 тыс. руб/кВт. Снижение себестоимости тепла, производимого на ТНС, по сравнению с традиционным теплоснабжением составило от 1,5 до 2,5 раз в зависимости от температуры низкопотенциального источника, а общая экономия топлива от всех запущенных в эксплуатацию ТНС составила около 32 тыс. т. у. т. Срок окупаемости у большинства ТНС не превышает двух лет [185].

Опыт эксплуатации ТНС в России показал, что из-за большей продолжительности отопительного периода по сравнению, например, с Западной Европой, а также значительно более острой проблемы транспорта топлива экономическая эффективность применения ТНС в России больше, чем в других странах.

Доказана возможность применения озонобезопасных фреонов, в частности фреона 142 (R-142 в). Так, в Каунасе работает ТНС с винтовым компрессором единичной мощностью 2 МВт с рабочим телом R-142, хотя термодинамические свойства этого фреона потребовали неординарных решений при создании ТНС с винтовым компрессором [185].

Принимая удельный расход на выработку 1кВт*ч электроэнергии равным 300 г у.т., нетрудно, дать сравнительную оценку вредных выбросов за отопительный сезон (5448 ч) от различных теплоисточников тепловой мощностью 1,16 МВт (см. табл. 2.1.1.) [185]. Табл. 2.1.1.

Вид вредного выброса, т/год

Котельная на угле

Электрообогрев

ТН, со среднегодовым КОП = 3,6

SOx

21,77

38,02

10,56

NOx

7,62

13,31

3,70

Твёрдые частицы

5,8

8,89

2,46

Фтористые соед.

0,182

0,313

0,087

Всего

34,65

60,53

16,81

Вредные выбросы при использовании теплового насоса - это выбросы в месте производства электроэнергии (за источник электроэнергии принята ТЭС); непосредственно же на месте установки тепловых насосов вредных выбросов нет. Такая ситуация наиболее благоприятна для рекреационных зон. Так, котельная на угле тепловой мощностью 1,16 МВт (1 Гкал/ч), работающая в курортной зоне Алтая - Белокурихе, за отопительный сезон (4880 ч) выбрасывает не менее 31 т вредных веществ. Тепловые насосы общей тепловой мощностью 1,2 МВт, установленные в радонолечебнице на сбросном тепле использованных радоновых вод с температурой 32’С, имеют среднегодовой коэффициент преобразования 7,2 и в самой Белокурихе вредных выбросов не производят. На ТЭС, расположенной в 70 км от курорта, вредные выбросы при производстве необходимой для этой ТНС электроэнергии в пересчете на 4,18 ГДж (1 Гкал) вырабатываемого ею тепла составят за отопительный сезон всего 4,31 т.

Ниже приведены среднегодовые коэффициенты преобразования теплонасосных установок для Западно-Сибирского региона (отопительный период 5448 ч) в зависимости от температуры низкопотенциального источника:

температура

низкопотенциального

источника,

° С.............................5 10 15 20 25 30 35 40

КОП среднегодовой ....3,6 4,1 4,6 5,3 5,9 6.6 , 7,2 7,9


При одинаковой теплопроизводительности, например 1 Гкал/ч (1,16 МВт), удельная экономия топлива при использовании ТНС составит по сравнению: с электроотоплением 0,277 - 0,335 т у.т.; с котельной на каменном угле (КПД = 0.65) 0,113 - 0,121 т у.т.; с котельной на природном газе (КПД = 0,8) 0,072-0,130 т у.т., где первое значение относится к использованию в теплонасосе низкопотенциального источника тепла с температурой 5° С, второе - с температурой 40° С [185].

2.2. Ветроэнергетические установки

Ветроэнергетика за рубежом
Ветроэнергетика в России
Фундаментальные знания в области ветроэнергетики

Ветроэнергетика за рубежом

Ветроэнергетические установки (ВЭУ) достигли сегодня уровня коммерческой зрелости и в местах с среднегодовыми скоростями ветра более 5 м/сек успешно конкурируют с традиционными источниками электроснабжения.


Ветропарк в штате Калифорния , США.
Рис. 2.2.1

Преобразование энергии ветра в механическую , электрическую или тепловую осуществляется в ветроустановках с горизонтальным или вертикальным расположением вала ветротурбины. Наибольшее распространение получили ветроэнергетические установки с горизонтальной осью ротора , работающие по принципу ветряной мельницы. Турбины с горизонтальной осью и высоким коэффициентом быстроходности обладают наибольшим значением коэффициента использования энергии ветра ( 0,46-0,48). Ветротурбины с вертикальным расположением оси менее эффективны (0,45) , но обладают тем преимуществом, что не требуют настройки на направление ветра. В таблице 2.2.1 приведены данные о доле на рынке различных типов ВЭУ в старых землях ФРГ.

Табл. 2.2.1

Расположение оси ротора

Доля на рынке, %
Вертикальноосевые установки 9
Горизонтальноосевые установки из них: с наветреным расположением ротора за башней с подветренным расположением ротора 91 77

14

Наибольшее распространение из сетевых установок сегодня получили ВЭУ с единичной мощностью от 100 до 500 кВт. Удельная стоимость ВЭУ мощностью 500 кВт составляет сегодня около 1200 $/кВт и имеет тенденцию к снижению. В таблице 2.2.2 приведена структура мощностей ВЭУ в старых землях ФРГ.

Табл. 2.2.2

Класс мощности, кВт Доля, %
10-19 11
20-49 19
50-149 34
150-500 26
401-1499 5
1500-5000 5

ВЭУ мегаваттного класса построены в ряде стран (рис 2.2.1) и на сегодняшний день находятся на стадии экспериментальных исследований или опытной эксплуатации.


Экспериментальные турбины мегаваттного класса.
Рис 2.2.2

Во многих развитых странах существуют Государственные программы развития возобновляемых источников энергии, в том числе и ветроэнергетики. Благодаря этим программам решаются научно-технические, энергетические, экологические, социальные и образовательные задачи. Генераторами проектов возобновляемых источников энергии в Европе являются исследовательские центры ( Riso, SERI( в настоящее время NREL), Sandia,ECN, TNO, NLR, FFA, D(FV)LR, CIEMAT и др.), университеты и заинтересованные компании.

В 1994 году , в Мадриде, на конференции “Генеральный план развития возобновляемых источников энергии в Европе” странами Европейского Союза была принята декларация. В “Мадридской декларации” были сформулированы цели по достижению 15% уровня использования возобновляемых источников энергии в общем потреблении энергии в странах Европейского Союза до 2010 г.[ 184 ]. В 1994 г.в странах Европейского Союза установленная мощность солнечных батарей, мини гидроэелектростанций и ветроэнергетичских установок составила 5.3 ГВт, к 2010 году предполагается смонтировать оборудование с установленной мощностью 55 ГВт.

Процент от мирового энергоснабжения


Годы

Два сценария развития энергетики до 2020 г. в странах Европы.

· · · ____ Текущая политика

------ Экологически ориентированная политика ,

* Традиционные источники: органическое топливо и большая гидроэнергетика ,

** Новые источники: биомасса, солнце, ветер, геотермальная, малая гидроэнергетика

Рис. 2.2.3.

Поставленные цели достигаются решением задач в области политики, льготного налогового законодательства, государственной финансовой поддержки через научно-технические программы , льготного кредитования, создания информационной сети, системы образования,стажировок, продвижения высоких технологий , созданием рабочих мест на производствах и подготовки общественного мнения.