Смекни!
smekni.com

База знаний в области технологий и систем использования низкотемпературных и возобновляемых источников энергии (стр. 3 из 20)

1.3. Энергия биомассы

Биомасса представляет собой древнейший источник энергии, однако её использование до недавнего времени сводилось к прямому сжиганию либо в открытых очагах, либо в печах и топках, но также с весьма низким КПД. В последнее время внимание к эффективному энергетическому использованию биомассы существенно повысилось, причем в пользу этого появились и новые аргументы:
· использование растительной биомассы при условии её непрерывного восстановления (например, новые лесные посадки после вырубки леса) не приводит к увеличению концентрации СО2 в атмосфере;
· в промышленно развитых странах в последние годы появились излишки обрабатываемой земли, которую целесообразно использовать под энергетические плантации;
· энергетическое использование отходов (сельскохозяйственных, промышленных и бытовых) решает также экологические проблемы;
· вновь созданные технологии позволяют использовать биомассу значительно более эффективно.
Потенциал биомассы, пригодный для энергетического использования в большинстве стран достаточно велик, и его эффективному использованию уделяется значительное внимание.
В США в 1990 г. благодаря использованию биомассы было произведено 31 млрд. кВт.ч электроэнергии, кроме того, за счет твердых бытовых отходов (ТБО) еще 10 млрд. кВт.ч. На 2010 г. планируется выработать соответственно 59 и 54 млрд. кВт.ч. Оценка технического потенциала различных видов биомассы, выполненная в Германии, дает: остатки лесной и деревоперерабатывающей промышленности - 142 млн. ГДж/год; солома - 104 млн. ГДж/год; биогаз - 81 млн. ГДж/год.
Эти оценки сделаны при весьма осторожных предположениях. В частности, предполагается, что доля отходов лесной промышленности составляет 25% годового прироста древесины. Аналогично для соломы учитывается ее количество, которое должно остаться на поле для поддержания содержания гумуса в почве. Для биогаза учитываются только хозяйства, имеющие не менее 20 голов крупного рогатого скота или эквивалентного количества свиней или птицы.
Серьезной проблемой является энергетическое использование ТБО. Мусоросжигающие установки (инсинераторы), имеющиеся во многих странах мира, малоэффективны и не удовлетворительны с точки зрения экологии. Поэтому разработка новых схем использования ТБО представляется весьма актуальной (см. разд. 3).
Особенно остра проблема эффективного использования биомассы для развивающихся стран, прежде всего для тех, у которых биомасса является единственным доступным источником энергии. Здесь в основном речь идет о рациональном использовании древесины и различных сельскохозяйственных и бытовых отходов. Известно, что сегодня население некоторых стран, прежде всего Африки, вырубает леса на дрова для приготовления пищи, и что этот процесс обезлесевания представляет собой угрозу как местному, так и глобальному климату. Используемые сегодня дровяные очаги для приготовления пищи имеют КПД 14-15%. Применяя более совершенные устройства, этот КПД легко повысить до 35- 50 %, т.е. сократить потребность в исходном топливе более чем в 3 раза.
Хорошо известна программа Бразилии, посвященная получению из отходов сахарного тростника метанола, применяемого как моторное топливо для автотранспорта. Однако этот пример интересен только для стран с соответствующим климатом.
Большое распространение в некоторых странах (Китай, Индия и др.) получили малые установки, утилизирующие отходы для одной семьи. В этих установках, число которых исчисляет миллионами, в результате анаэробного сбраживаних производится биогаз, используемый для бытовых нужд. Эти установки весьма просты, но не очень совершенны. Для больших ферм со значительным количеством отходов создаются более эффективные биогазовые установки [57,94].

1.4. Источники низкопотенциальной теплоты

Вторичными энергетическими ресурсами (ВЭР) называются тепловые отходы технологических производств промышленных предприятий, коммунальных, бытовых, жилых и других объектов. К категории ВЭР можно также отнести самоизливающиеся геотермальные воды; горячие минеральные источники, теплота которых не используется в бальнеологии; сжигаемый попутный газ при нефтедобыче; добываемая горячая нефть и др.
Вопросы экономии топлива путем использования ВЭР в последние годы превратились в актуальную проблему, и являются общегосударственной задачей. Промышленные потребители используют в настоящее время свыше 60% всего добываемого топлива и около 70 % всей вырабатываемой электроэнергии. Коэффициент полезного использования энергии в технологических процессах остается все еще невысоким и составляет лишь 35-40 %. В период до 1991 года ситуация с утилизация ВЭР в промышленности улучшалась, однако достигнутая фактическая экономия топлива за счет теплоты ВЭР по отношению к возможной составляет 30-32 %, в том числе в нефтеперерабатывающей и нефтехимической промышленности -40%, в черной металлургии -40%, в химической -25 % .
Одним из эффективных направлений утилизации теплоты ВЭР являлось производство холода для предприятий, технологические процессы которых требовали его при различных температурах охлаждения. Следует отметить, что большинство предприятий химической, нефтехимической и других отраслей промышленности являются хладоемкими производствами и одновременно характеризуются наличием достаточно большого количества неиспользуемых ВЭР в виде пара, горячей воды, факельных сбросов, горячих газов и т.п.
Но решая вопрос о рациональном и эффективном использовании ВЭР нельзя забывать о том, что наряду с получением холода могут быть осуществлены также процессы трансформации теплоты с низкотемпературного уровня на более высокий и наоборот.
Общедоступным источником низкопотенциальной теплоты является атмосферный воздух, который широко используют для малых теплонасосных установок - ТНУ (квартирных, домовых). Однако низкие значения температуры воздуха, малая его теплоемкость и коэффициент теплоотдачи не позволяют достичь приемлемых показателей энергетической эффективности крупных установок, в частности ТН-станций, к испарителям которых требуется подводить большие тепловые потоки.
Крупные незамерзающие водоемы представляют ценность в качестве источников теплоты для ТНУ. К ним, например, относятся Черное море, Каспийское море в средней и южной частях, озеро Иссык-Куль. На Черноморском побережье Кавказа и Крыма действуют ТНУ на морской воде, температура которой зимой в этих районах не опускается ниже 8°С. Особенно эффективно круглогодичное использование теплоты морской воды (с температурой летом 20-25 °С) для ТНУ горячего водоснабжения, составляющего значительные нагрузки в южных городах и курортах. В переходный и зимний периоды года в ТНУ могут быть использованы холодная вода из водоёмов, наружный воздух с температурой свыше 0°С, а так же горные породы (грунт).
Источником низкопотенциальной теплоты могут служить слабоминерализованные геотермальные воды, солнечная энергия, запасаемая с помощью гелиоустановок и аккумуляторов теплоты.
Однако основными источниками теплоты для крупных ТНУ следует считать искусственные источники - тепловые отходы. Быстрый рост потребления энергоресурсов влечет за собой как истощение природных богатств, так и тепловые загрязнения биосферы. Например, тепловые электростанции, в том числе и АЭС, сбрасывают с охлаждающей водой 50-55 % энергии топлива. Иногда решающим фактором в выборе площадки для строительства ТЭС (АЭС) оказывается наличие естественных водоёмов, способных без особого ущерба воспринять бросовую теплоту. Промышленные предприятия потребляют огромное количество воды для охлаждения машин и рабочих тел в различных технологических процессах. Объем оборотной и повторно используемой в промышленности воды в 1966 г. в нашей стране составлял км3/год, а в 1980 г.-132 км3/год, или 61% используемой всей промышленностью воды. Эти “тепловые реки” имеют круглый год температуру 20-40 °С, практически не позволяющую использовать теплоту непосредственно, и охлаждаются в градирнях или других испарительных охладителях, отдавая в атмосферу вместе с теплотой часть воды.
При замене градирен испарителями ТНУ степень охлаждения воды (перепада температуры) при сохранении ее расхода должна оставаться в среднем около 10 °С.
Концентрацию тепловых потоков в системах оборотного водоснабжения можно оценить на примере одного из крупнейших автомобильных заводов. Общий объём оборотной воды составляет около 75 тыс. м3/ч, организован в водоблоках по (10-12) тыс. м3/ч. Вода поступает на охлаждение с температурой 30-40°С круглогодично и охлаждается до 15-20°С. В целом по заводу в атмосферу сбрасывается 1300МВт теплоты.
Нефтеперерабатывающие и химические заводы также являются мощными источниками вторичных энергетических pecyрсов (ВЭР). По виду ВЭР разделяются на три основные группы: 1) горячие (топливные) отходящие газы печей; отходы, непригодные для дальнейшей технологической переработки; 2) тепловые ВЭР - физическая теплота отходящих газов технологических агрегатов; физическая теплота основной, побочной, промежуточной продукции и отходов основного производства; теплота горячей воды и пара, отработанных в технологических силовых установках; 3) ВЭР избыточного давления, потенциальная энергия газов и жидкостей, которое необходимо снижать перед последующей ступенью использования жидкостей (газов) или выброса их в атмосферу.
Источники теплоты ВЭР можно использовать в аммиачных преобразователях теплоты (АПТ) и в теплонасосных установках. В теплонасосных установках можно использовать низкотемпературную теплоту (20-60°С), для АПТ - низко - и среднепотенциальное на уровне 80-160°С, а также высокопотенциальное тепло (160-400°С). Особенно актуальной задачей является утилизация теплоты, содержащейся в технологической воде.
Если ориентировочно принять, что в общем (по стране) объёме оборотного водоснабжения охлаждению подвергается только75% воды, т.е. примерно 120 км3 в год (по уровню 1985г.), и температурный перепад составляет 10°С, то организованный сброс низкопотенциальной теплоты промышленностью составляет более 5 млрд. ГДж в год. Вода, однократно потребляемая, промышленными предприятиями (около 40% всего объёма) в конечном счете, канализируется в естественные водоемы. При современных требованиях к защите окружающей среды и промышленные, и коммунально-бытовые стоки перед сбросом в водоёмы должны проходить сложную систему очистки на водоочистных сооружениях или на станциях аэрации (в крупных городах). В Москве, например, несколько станций аэрации сбрасывают в Москву-реку более 5 млн м3 /сут. очищенной воды температурой 16-22°; вместе с водой поступает и тепловой поток в 3-4 млн. кВт. Станции аэрации действуют в Санкт-Петербурге, Самаре и других городах. Многие миллионы кубических метров воды сбрасываются в реки, заливы водоемы вместе с теплотой, которую можно использовать в ТНУ и преобразовать низкопотенциальную теплоту в теплоту более высокой температуры, способную удовлетворить определённую часть потребностей и сократить расход топлива.