Смекни!
smekni.com

Тема общие принципы управления смонтировали систему автоматического управления. Запустили на (стр. 3 из 6)

Оценки переходных характеристик производятся с помощью следующих показателей:

Характер временной зависимости. По характеру зависимости переходные характеристики делятся на монотонные и колебательные. Переходная характеристика считается монотонной, если она имеет не более одного экстремума. В противном случае переходную характеристику относят к колебательной (немонотонной).

Время переходного процесса – это время, в течение которого выходная величина после начала изменения входной достигает нового установившегося значения. Теоретически это время стремиться к бесконечности, поэтому за время переходного процесса принимают время, за которое выходная величина достигает нового установившегося значения с заданной степенью точности tпп, обычно порядка 3-5% от нового установившегося значения. Нетрудно заметить (рис. 2.3.2). что степень точности D соответствует статической ошибке регулирования.

Динамическая ошибка - это разность между действительным значением выходной величины yi в данный момент (ti) и её новым установившемся значением y0, т.е

Dy(t) = y(t) – y0. (2.2.1)

Динамическая ошибка представляет собой функцию времени. Максимальную положительную относительную ошибку за время переходного процесса называют выбросом. Выброс определяется формулой (см. рис. 2.3.2):

s = (yм – y0) / y0 (2.2.2)

Колебательность - количество полных колебаний за время переходного процесса. Колебательность может характеризоваться частотой или периодом колебаний выходной величины.

Импульсная характеристика является другой не менее распространенной временной характеристикой системы. Её называют импульсной переходной характеристикой или функцией веса и обозначают h(t). Это зависимость выходной величины системы от времени, если входная величина изменилась на единичный идеальный импульс.

Рис. 2.3.3.

Для получения импульсной характеристики используют импульсы прямоугольной формы (рис. 2.3.3). Такой импульс аналитически определяется выражениями:

A(t) = 0, 0 > t > t;

A(t) = a, 0 ≤ t ≤ t;

A(t) dt = at.

Рис. 2.3.4.

Произведение at часто называют величиной импульса. Если величина импульса равна единице, то импульс называют единичным. Если t → 0, то импульс называет идеальным. Он является теоретической дельта-функцией d(t) с бесконечной амплитудой в точке t=0 и площадью, равной 1.

Импульсная характеристика - это реакция системы на идеальное единичное импульсное изменение входной величины. Она может быть задана аналитически в виде системы уравнений {x = d(t), y = F(t)}. Так как идеальный импульс представляет собой производную скачка, d(t) = d 1(t) / dt, то импульсная характеристика есть производная переходной характеристики системы. Оценка импульсной характеристики производится теми же показателями, что и переходной. Пример характеристики приведен на рис. 2.3.4.

2.4. УРАВНЕНИЯ СОСТОЯНИЯ СИСТЕМ УПРАВЛЕНИЯ [7, 8, 9, 14].

Динамические системы, в которых предполагается, что прохождение возмущения от входа к выходу в ОУ происходит мгновенно, описываются обыкновенными дифференциальными уравнениями и называются системами с сосредоточенными параметрами. Например, система управления двигателем, химическим реактором, самолетом и т.п.

Динамические системы, в которых предполагают, что время прохождения возмущения конечно, описываются дифференциальными уравнениями в частных производных и называются системами с распределенными параметрами. Например, прохождение воды в трубопроводе, распространение тепла в реакторе, регулирование температуры в нефтепроводе и т.п.

Нормальное уравнение состояния. Уравнением состояния системы называют равенство, связывающее входные и выходные величины, изменяющиеся во времени, и справедливое для любого момента времени.

Известно, что любую величину, изменяющуюся во времени можно представить в виде дифференциального уравнения. Представим в этом виде управляющий сигнал на входе системы:

. (2.4.1)

Соответственно, уравнение сигнала на выходе элемента:

. (2.4.2)

В каждый текущий момент времени система находится в состоянии определенного равновесия между входом и выходом: Y(t) = K U(t), или

. (2.4.3)

Это уравнение называют нормальным уравнением состояния системы. В более общем виде оно записывается в следующей форме

, (2.4.4)

или с приведением к нормализованной форме

. (2.4.5)

Сопоставлением (2.4.5) с (2.4.3) получаем значения коэффициента усиления K = bm/an, и постоянных времени Ti = an-i/an, tj = bm-j/bm. Коэффициент передачи и постоянные времени однозначно характеризуют свойства системы, в большинстве случаев являются постоянными величинами и называются параметрами системы.

Полное уравнение системы. Полное поведение системы или любого ее звена в зависимости от всех воздействующих факторов описывается уравнением временной динамики y(t) = F(u,f,t). Как правило, это система дифференциальных уравнений. Поэтому основным методом исследования систем является метод решения дифференциальных уравнений. Порядок дифференциальных уравнений может быть довольно высоким, и определенной зависимостью могут быть связаны как входные и выходные величины u(t), f(t), y(t), так и скорости их изменения, ускорения и т.д. Поэтому уравнение временного состояния системы в общем виде можно записать так:

F(y, y', y'',..., y(n) , u, u', u'',..., u(m) , f, f ', f '',..., f(k)) = 0.

Существует два способа получения дифференциальных уравнений объекта:

· Способ применения известных законов (закон Ома, законы механики и т.д.). Способ применим в случаях, когда объект управления простой и система невысокого порядка, или когда объект сложный, но можно воспользоваться законами статистики.

· Эвристический способ. Используются уравнения, основанные на опыте работы с предыдущими объектами, экспертные оценки, мнение специалистов. Такое описание называют феноменологическим, т.е. описанием объекта по основным чертам его внешнего поведения, без глубокого формального (математического, физического и т.п.) проникновения в сущность его функционирования.

Для полученной модели должны быть исследованы:

1. адекватность модели поведению реального объекта;

2. границы адекватности по пределам изменения параметров и переменных модели.

Линеаризация уравнения динамики. В общем случае уравнение динамики оказывается нелинейным. В целях упрощения решений нелинейные уравнения заменяют линейными, которые приблизительно (с определенной точностью) описывают динамические процессы в системе.

Рис. 2.4.2.

В основе линеаризации нелинейных уравнений лежит допущение, что в нормально функционирующей системе отклонения регулируемой величины и переменных процесса от стационарных (установившихся) значений представляют собой достаточно малые величины. Это положение, как правило, всегда действительно для замкнутых систем. В пределах малых отклонений нелинейные зависимости между величинами, входящими в уравнение динамики, могут быть приближенно представлены отрезками прямых линий. Например, нелинейная статическая характеристика звена на участке АВ (рис. 2.4.2) может быть представлена отрезком касательной А"В" в точке номинального режима. Начало координат переносится в точку О', и в уравнениях записываются не абсолютные значения величин y, u, f, а их отклонения от номинальных значений: Dy = y-ун, Du = u-uн, Df = f-fн. Это позволяет получить нулевые начальные условия, если считать, что при t ≤ 0 система находилась в номинальном режиме.

Если допустить, что система находится в номинальной рабочей точке U0' = uн, У0’ = yн, то ее состояние в установившемся режиме опишется уравнением статики: Y0’ = K X0’. При выходе из установившегося состояния координаты системы получат приращения и станут равными U = U0’+DU, Y = Y0’+DY, а поскольку производные от постоянных величин равны нулю (di(X0’+DX)/dti = di(DX)/dti), то уравнение такого состояния будет иметь вид

. (2.4.6)

Для переноса в уравнении (2.4.6) начала координат в рабочую точку вычтем из него уравнение статики. В результате получим: