Смекни!
smekni.com

Тема математические модели дискретных систем управления мы редко до конца понимаем, чего действительно хотим (стр. 5 из 5)

При z1 = -а ∈ (0,1) имеем (-a)k →0 при k→∞, и получаем апериодический затухающий процесс: y(k) →0. Звено асимптотически устойчиво.

При z = -а = 1 (суммирующее звено) находим y(k) = y0, k > 0. Звено нейтрально устойчиво.

Наконец, если z1 = -а > 1, то при k→ ∞, (-a)k → ∞, и получаем апериодический расходящийся процесс: |y(k)| → ∞. Звено неустойчиво.

При отрицательных значениях z1 = -а переходные процессы приобретают колебательный характер. При z1 = -а ∈ (-1,0) получаем (-a)k →0 при k → ∞, и затухающий колебательный процесс: y(k) → 0. Звено асимптотически устойчиво.

При z1 = -а = -1, y(k) = ∓ y0, k > 0, получаем незатухающий колебательный процесс. Звено нейтрально устойчиво.

Наконец, при z1 = -а < -1 находим, что при k → ∞, |(-a)k| → ∞, и получаем расходящийся (неустойчивый) колебательный процесс: |y(k)| → ∞.

Элементарные звенья 2-го порядка. К дискретным звеньям этого типа относятся колебательное и консервативное звено.

Колебательное звено описывается уравнением

y(k +2) - 2M y(k+1) cos j + M2 y(k) = b u(k) sin j, (6.3.32)

где M ∈ (0,1), j ∈ (0, p/2). Передаточная функция и комплексно-сопряженные полюсы:

W(z) = b sin j /(z2 - 2М z cos j + М2), z1,2 = M exp(∓jj). (6.3.33)

Звено асимптотически устойчиво и имеет статическую характеристику

y = b sin j /(1 - 2М cos j + М2). (6.3.34)

Консервативное звено (дискретный осциллятор) описывается уравнением

y(k +2) - 2 y(k+1) cos j + y(k) = b u(k) sin j, (6.3.35)

где j ϵ (0, p/2). Передаточная функция и полюсы

W(z) = b sin j /(z2 - 2 z cos j + 12), z1,2 = exp(∓jj). (6.3.36)

Звено нейтрально устойчиво и не имеет статической характеристики.

Рассмотрим свободные составляющие переходных процессов звеньев второго порядка для различных значений параметра М. Уравнение автономной системы

y(k +2) - 2M y(k+1) cos j + M2 y(k) = 0, (6.3.37)

с начальными значениями y(0) = 1 и у(-1) = М-1 cos j.

Рис. 6.3.2.

Решения уравнения имеют вид

y(k) = Mk cos jk. (6.3.38)

Переходные процессы системы представлены на рис. 6.3.2. Если j < p/2, то полюсы системы имеют положительные вещественные части: Re z1,2 > 0. При М ϵ (0,1) (колебательное звено) получаем сходящиеся колебательные процессы, при М = 1 (осциллятор) - незатухающий колебательный процесс, а при М > 1 - расходящиеся колебательные процессы.

Аналогично ведут себя и системы, для которых p/2 < j < p, что соответствует отрицательным вещественным полюсам: Re z1,2 < 0. Основным отличием таких систем является двухчастотный колебательный режим, вызванный переключением знака выходной переменной на каждом шаге k.

Устойчивость дискретных систем. Как и для систем непрерывного времени, под устойчивостью дискретной системы понимают ее способность возвращаться в положение равновесия после окончания действия внешних факторов. Рассматривается свободное движение управляемой системы, либо движение автономной системы при ненулевых начальных условиях.

Автономная система описывается уравнениями

a(z)y(k) = 0, a(z) = zn + al zn-1 + ... + an, yy = y* = 0. (6.3.39)

Понятия устойчивости линейных дискретных систем практически полностью идентичны соответствующим понятиям непрерывных систем. Критерии устойчивости дискретных систем легко выводятся из соответствующих положений непрерывной теории, если принять во внимание, что полюсы zi дискретной системы связаны с полюсами pi эквивалентной непрерывной модели соотношением zi = ехр(Трi). Поэтому ограничимся рассмотрением только свойства асимптотической устойчивости.

Устойчивость по выходу (техническая устойчивость) определяется характером изменения выходной переменной y(k), т. е. свойствами решений системы (6.3.39). Система называется асимптотически устойчивой, если выполняется условие

= 0.

Основной метод исследования устойчивости дискретных системы предусматривает использование корневых критериев. Дискретная система асимптотически устойчива тогда и только тогда, когда модули всех корней (полюсов) характеристического уравнения системы меньше 1, т.е. |zi|<1, i=(1,n). Другими словами, полюсы системы на комплексной плоскости должны находиться внутри круга единичного радиуса, при этом окружность единичного радиуса является границей устойчивости. Наличие хотя бы одного корня вне единичного круга делает дискретную систему неустойчивой. Появление одного вещественного или пары двух комплексно-сопряженных корней на единичной окружности при условии расположения остальных корней внутри круга говорит о нейтральной устойчивости дискретной системы (устойчивости по Ляпунову).

Качество дискретных систем управления. Как и для систем непрерывного времени, показатели качества дискретных систем предназначены для оценки динамических свойств системы, проявляющихся в переходных режимах, и для определения точности, характеризующейся ошибками системы в установившемся режиме после окончания переходных процессов.

Динамические показатели качества характеризует поведение свободных составляющих переходного процесса замкнутой системы управления, либо процессов автономной системы. Последние рассматриваются как решения скалярного разностного уравнения (6.3.39). Естественно, что рассматриваются только устойчивые системы.

Динамические показатели качества дискретных систем определяются аналогично показателям систем непрерывного времени и могут быть найдены с использованием тех же подходов при условии выполнения теоремы Котельникова-Шеннона для выбора интервала квантования Т при переходе к дискретной форме описания системы.

Скорость протекания дискретных процессов определяется значениями модулей полюсов системы |zi| = exp(-aiT). Значения |zi| уменьшаются с увеличением модулей вещественных частей полюсов непрерывной системы aI, что равносильно увеличению быстродействия, т. е. уменьшению времени переходного процесса tпп. Это служит основанием для введения (по аналогии с непрерывными системами) понятия степени устойчивости дискретной системы как радиуса распределения ее полюсов на комплексной плоскости.

Степенью устойчивости дискретной системы называется положительное число

h = max |zi|, i = (1, n).

Cкорость протекания процессов возрастает при приближении полюсов к началу координат комплексной плоскости. Грубая оценка времени переходных процессов дискретной системы по степени устойчивости h (только по самой медленной составляющей переходного процесса) выполняется по формуле:

tпп ≈ 3T/ln h.

литература

1. Мирошник И.В. Теория автоматического управления. Линейные системы: Учебное пособие для вузов. - СПб.: Питер, 2005. - 336 с.

2. Повзнер Л.Д. Теория систем управления: Учебное пособие для вузов. - М.: Изд. МГГУ, 2002. - 472 с.

4. Орлов А.И. Менеджмент: Учебник. – М.: "Изумруд", 2003. URL: http://www.aup.ru/books/m151/

11. Михайлов В.С. Теория управления. – К.: Выща школа, 1988.

12. Зайцев Г.Ф. Теория автоматического управления и регулирования. – К.: Выща школа, 1989.

Главный сайт автора ~ Лекции по ОТУ

О замеченных опечатках, ошибках и предложениях по дополнению: davpro@yandex.ru.

Copyright ©2008-2009 Davydov А.V.