Рис. 17. Пример схемы «снежинка»
Отметим, что даже при наличии иерархических измерений с целью повышения скорости выполнения запросов к хранилищу данных нередко предпочтение отдается схеме «звезда».
Однако не все хранилища данных проектируются по двум приведенным выше схемам. Так, довольно часто вместо ключевого поля для измерения, содержащего данные типа «дата», и соответствующей таблицы измерений сама таблица фактов может содержать ключевое поле типа «дата». В этом случае соответствующая таблица измерений просто отсутствует.
В случае несбалансированной иерархии (например, такой, которая может быть основана на таблице Employees базы данных Northwind, имеющей поле EmployeeID, которое одновременно является и первичным, и внешним ключом и отражает подчиненность одних сотрудников другим (см. рис. 10) в схему «снежинка» также следует вносить коррективы. В этом случае обычно в таблице измерений присутствует связь, аналогичная соответствующей связи в оперативной базе данных.
Еще один пример отступления от правил — наличие нескольких разных иерархий для одного и того же измерения. Типичные примеры таких иерархий — иерархии для календарного и финансового года (при условии, что финансовый год начинается не с 1 января), или с различными способами группировки членов измерения (например, группировать товары можно по категориям, а можно и по компаниям-поставщикам). В этом случае таблица измерений содержит поля для всех возможных иерархий с одними и теми же членами нижнего уровня, но с разными членами верхних уровней (пример такой таблицы приведен на рис. 12).
Как мы уже отмечали выше, таблица измерений может содержать поля, не имеющие отношения к иерархиям и представляющие собой просто дополнительные атрибуты членов измерений (member properties). Иногда такие атрибуты могут быть использованы при анализе данных.
Более подробно о проектировании хранилищ данных и одном из CASE-инструментов, способных упростить процесс их создания, — CA Erwin, рассказано в статье Сергея Маклакова «Хранилища данных и их проектирование с помощью CA Erwin», КомпьютерПресс, CD-ROM № 1’2001).
Следует сказать, что для создания реляционных хранилищ данных нередко ЭШеляяются специализированные СУБД, хранение данных в которых оптимизировано с точки зрения скорости выполнения запросов. Примером такого продукта является Sybase Adaptive Server IQ, реализующий нетрадиционный способ хранения данных в таблицах (не по строкам, а по столбцам). Однако создавать хранилища можно и в обычных ЭШеляонных СУБД.
Итак, обсудив типичную структуру хранилища данных, на основе которых обычно строятся OLAP-кубы, вернемся к созданию OLAP-кубов и поговорим о том, какими бывают OLAP-инструменты.
Многомерный анализ данных может быть произведен с помощью различных средств, которые условно можно разделить на клиентские и серверные OLAP-средства.
Клиентские OLAP-средства представляют собой приложения, осуществляющие вычисление агрегатных данных (сумм, средних величин, максимальных или минимальных значений) и их отображение, при этом сами агрегатные данные содержатся в ЭШе внутри адресного пространства такого OLAP-средства.
Если исходные данные содержатся в настольной СУБД, вычисление агрегатных данных производится самим OLAP-средством. Если же источник исходных данных — серверная СУБД, многие из клиентских OLAP-средств посылают на сервер SQL-запросы, содержащие оператор GROUP BY, и в результате получают агрегатные данные, вычисленные на сервере.
Как правило, OLAP-функциональность реализована в средствах статистической обработки данных (из продуктов этого класса на российском рынке широко распространены продукты компаний StatSoft и SPSS) и в некоторых электронных таблицах. В частности, неплохими средствами многомерного анализа обладает Microsoft Excel 2000. С помощью этого продукта можно создать и сохранить в виде файла небольшой локальный многомерный OLAP-куб и отобразить его двух- или трехмерные сечения.
Многие средства разработки содержат библиотеки классов или компонентов, позволяющие создавать приложения, реализующие простейшую OLAP-функциональность (такие, например, как компоненты DecisionCube в Borland Delphi и Borland C++Builder). Помимо этого многие компании предлагают элементы управления ActiveX и другие библиотеки, реализующие подобную функциональность.
Отметим, что клиентские OLAP-средства применяются, как правило, при малом числе измерений (обычно рекомендуется не более шести) и небольшом разнообразии значений этих параметров, — ведь полученные агрегатные данные должны умещаться в адресном пространстве подобного средства, а их количество растет экспоненциально при увеличении числа измерений. Поэтому даже самые примитивные клиентские OLAP-средства, как правило, позволяют произвести предварительный подсчет объема требуемой оперативной памяти для создания в ней многомерного куба.
Многие (но не все!) клиентские OLAP-средства позволяют сохранить содержимое ЭШе с агрегатными данными в виде файла, что, в свою очередь, позволяет не производить их повторное вычисление. Отметим, что нередко такая возможность используется для отчуждения агрегатных данных с целью передачи их другим организациям или для публикации. Типичным примером таких отчуждаемых агрегатных данных является статистика заболеваемости в разных регионах и в различных возрастных группах, которая является открытой информацией, публикуемой министерствами здравоохранения различных стран и Всемирной организацией здравоохранения. При этом собственно исходные данные, представляющие собой сведения о конкретных случаях заболеваний, являются конфиденциальными данными медицинских учреждений, которые ни в коем случае не должны попадать в руки страховых компаний и тем более становиться достоянием гласности.
Идея сохранения ЭШе с агрегатными данными в файле получила свое дальнейшее развитие в серверных OLAP-средствах, в которых сохранение и изменение агрегатных данных, а также поддержка содержащего их хранилища осуществляются отдельным приложением или процессом, называемым OLAP-сервером. Клиентские приложения могут запрашивать подобное многомерное хранилище и в ответ получать те или иные данные. Некоторые клиентские приложения могут также создавать такие хранилища или обновлять их в соответствии с изменившимися исходными данными.
Преимущества применения серверных OLAP-средств по сравнению с клиентскими OLAP-средствами сходны с преимуществами применения серверных СУБД по сравнению с настольными: в случае применения серверных средств вычисление и хранение агрегатных данных происходят на сервере, а клиентское приложение получает лишь результаты запросов к ним, что позволяет в общем случае снизить сетевой трафик, время выполнения запросов и требования к ресурсам, потребляемым клиентским приложением. Отметим, что средства анализа и обработки данных масштаба предприятия, как правило, базируются именно на серверных OLAP-средствах, например, таких как Oracle Express Server, Microsoft SQL Server 2000 Analysis Services, Hyperion Essbase, продуктах компаний Crystal Decisions, BusinessObjects, Cognos, SAS Institute. Поскольку все ведущие производители серверных СУБД производят (либо лицензировали у других компаний) те или иные серверные OLAP-средства, выбор их достаточно широк и почти во всех случаях можно приобрести OLAP-сервер того же производителя, что и у самого сервера баз данных.
Отметим, что многие клиентские OLAP-средства (в частности, Microsoft Excel 2000, Seagate Analysis и др.) позволяют обращаться к серверным OLAP-хранилищам, выступая в этом случае в роли клиентских приложений, выполняющих подобные запросы. Помимо этого имеется немало продуктов, представляющих собой клиентские приложения к OLAP-средствам различных производителей.
OLAP-серверы могут хранить многомерные данные разными способами, которые мы и обсудим в следующем разделе.
Технические аспекты многомерного хранения данных
В многомерных хранилищах данных содержатся агрегатные данные различной степени подробности, например, объемы продаж по дням, месяцам, годам, по категориям товаров и т.п. Цель хранения агрегатных данных — сократить время выполнения запросов, поскольку в большинстве случаев для анализа и прогнозов интересны не детальные, а суммарные данные. Поэтому при создании многомерной базы данных всегда вычисляются и сохраняются некоторые агрегатные данные.
Отметим, что сохранение всех агрегатных данных не всегда оправданно. Дело в том, что при добавлении новых измерений объем данных, составляющих куб, растет экспоненциально (иногда говорят о «взрывном росте» объема данных). Если говорить более точно, степень роста объема агрегатных данных зависит от количества измерений куба и членов измерений на различных уровнях иерархий этих измерений. Для решения проблемы «взрывного роста» применяются разнообразные схемы, позволяющие при вычислении далеко не всех возможных агрегатных данных достичь приемлемой скорости выполнения запросов.
Как исходные, так и агрегатные данные могут храниться либо в реляционных, либо в многомерных структурах. Поэтому в настоящее время применяются три способа хранения данных:
· MOLAP (Multidimensional OLAP) –— исходные и агрегатные данные хранятся в многомерной базе данных. Хранение данных в многомерных структурах ЭШеляяет манипулировать данными как многомерным массивом, благодаря чему скорость вычисления агрегатных значений одинакова для любого из измерений. Однако в этом случае многомерная база данных оказывается избыточной, так как многомерные данные полностью содержат исходные реляционные данные.