Смекни!
smekni.com

Эволюция корпоративных информационных систем 4 (стр. 8 из 12)

Рис. 7. Набор программных средств Oracle, реализующих технологию работы с ХД

Для разработки и развертывания хранилищ и витрин данных предназначен продукт Oracle Warehouse Builder, который представляет собой интегрированную CASE-среду, ориентированную на создание информационно-аналитических систем. Средствами этого продукта можно проектировать, создавать и администрировать хранилища и витрины данных, разрабатывать и генерировать процедуры извлечения, преобразования и загрузки данных из различных источников, эффективно управлять метаданными. Стандарты Common Warehouse Model, лежащие в основе репозитария Oracle Warehouse Builder, обеспечивают его интеграцию с различными аналитическими инструментальными средствами как Oracle, так и других фирм. Для организации доступа с рабочих мест аналитиков к данным хранилища и витрин используются специализированные рабочие места, поддерживающие необходимые технологии как оперативного, так и долговременного анализа. Аналитическая деятельность в рамках корпорации достаточно разнообразна и определяется характером решаемых задач, организационными особенностями компании, уровнем и степенью подготовленности аналитиков. В связи с этим современный подход к инструментальным средствам анализа не ограничивается использованием какой-то одной технологи. В настоящее время принято различать четыре основных вида аналитической деятельности:

· стандартная отчетность,

· нерегламентированные запросы,

· многомерный анализ (OLAP) и

· извлечение знаний (data mining).

Каждая из этих технологий поддерживается продуктами Oracle: для стандартной отчетности используется OracleReports, для формирования нерегламентированных отчетов и запросов — OracleDiscoverer, для сложного многомерного анализа – опция сервера Oracle9i OLAP Services вместе с Jdeveloper и BI JavaBeans или линия продуктов OracleExpress, а для задач «извлечения знаний опция OracleDataMining.

Важнейшей чертой аналитических инструментальных средств и приложений Oracle является их готовность к работе в среде Web. Менеджеры и аналитики, где бы они ни находились, могут получать информацию из Хранилищ и Витрин Данных в защищенной Интранет-архитектуре с помощью сервера приложений Oracle9i ApplicationServer.

Кроме собственно продуктов, обеспечивающих полное решение для корпоративной информационно-аналитической системы, корпорация Oracle предлагает оригинальную методологию выполнения проекта по созданию и сопровождению таких систем. Эта методология называется Data Warehouse Method (DWM) и является частью общего подхода Oracle к проектированию и реализации различных проектов.

Выбор продукта

Для успешного внедрения Хранилища Данных крайне важен правильный выбор поставщика. Предлагаемое им решение должно удовлетворять следующим критериям:

· Полнота — решение должно покрывать бизнес-потребности компании, предлагать полный спектр программных продуктов, обеспечивать техническую поддержку, обучение и другие сервисные услуги. Помимо технологической основы, оно должно включать в себя готовые приложения, которые позволят менеджерам решать вышеупомянутые аналитические задачи – поиска возможностей роста, обеспечения финансовой эффективности и баланса между ними.

· Интегрированность — решение должно хорошо вписаться в существующую среду; оно должно обеспечить бесперебойное взаимодействие всеми между компонентами системы на основе стандартов, принятых в индустрии программного обеспечения.

· Неограниченность — решение должно быть адаптируемым к изменениям; оно должно быть расширяемым на большее количество пользователей и большие объемы данных.

· Гарантированность — решение должно быть проверенным в смысле получаемых бизнес-преимуществ и качества технологии; поставщик должен иметь прочные финансовые позиции, значительную долю рынка, хорошую клиентскую базу и большое число партнеров, внедряющих его технологии.

Выбирая Oracle, организация получает решение, удовлетворяющие всем этим критериям. Оно включает в себя как интегрированный набор программных продуктов, поддерживающих полный цикл построения и эксплуатации Хранилища Данных, так и комплекс связанных с этим услуг. Продукты Oracle характеризуются высокой степенью ЭШештабируемости, работают на большинстве аппаратных платформ и с любыми источниками информации. Таким образом, можно создать аналитическую систему в любой среде и адаптировать ее к возможным изменениям. Наконец, все это уже не однажды сделано: на базе технологий Oracle внедрены тысячи систем поддержки принятия решений по всему миру, в том числе на территории СНГ [9].

По данным аналитической фирмы IDC Research на начало 2001 года, компания Oracle, крупнейший производитель программного обеспечения для электронного бизнеса, лидирует на рынке инструментального ПО для хранилищ данных (на долю компании приходится 21% этого рынка объемом 5,3 миллиардов долларов).

IDC уверена, что ПО хранилищ данных помогает компаниям повысить эффективность своего бизнеса и реализовать новые возможности. Хотя своему лидерству на рынке инструментального ПО для хранилищ данных Oracle обязана главным образом доминированию на рынке систем управления базами данных (СУБД) в целом, корпорация в то же время является одним из ведущих поставщиков средств доступа к информации хранилищ данных.

Отчет IDC охватывает три сегмента рынка инструментального ПО для хранилищ данных: средства управления, средства доступа к информации и средства генерации хранилищ данных. В 1999 году совокупный доход от продаж ПО этого типа во всем мире достиг 5,3 миллиардов долларов, а к 2004 году IDC прогнозирует его рост до 17 миллиардов долларов. Из трех указанных сегментов рынка два — средства управления хранилищами данных и средства доступа к информации — выросли в 1999 году по сравнению с 1998 годом особенно заметно: на 22,4 и на 38,6% соответственно. На рынке средств управления хранилищами данных Oracle лидировала в 1999 году почти с 10%-ным отрывом от ближайшего конкурента.

На развивающемся рынке хранилищ данных и интеллектуального бизнес-ПО лидерство от мелких поставщиков с узкой специализацией переходит к таким компаниям, как Oracle, способным предложить полное, комплексное решение. Отчет IDC подтверждает бесспорное лидерство Oracle на рынке инструментального ПО для хранилищ данных.

Комплекс инструментального ПО Oracle, решающий весь спектр задач интеллектуального электронного бизнеса, основан на открытых интерфейсах, поддерживающих Эмые разные приложения Oracle и независимых производителей. С помощью таких компонентов Oracle9i Application Server, как Oracle Discoverer и OracleReports, бизнес-аналитики выполняют сложные запросы и анализируют данные — и реляционные, и многомерные, публикуя затем отчеты в интра- и экстрасетях. В целом весь комплекс интеллектуальных бизнес-инструментов Oracle сокращает расходы на разработку и внедрение хранилищ данных и служит мощным средством анализа, без которого невозможно успешное развитие любого предприятия.

Что такое OLAP

Системы поддержки принятия решений обычно обладают средствами предоставления пользователю агрегатных данных для различных выборок из исходного набора в удобном для восприятия и анализа виде. Как правило, такие агрегатные функции образуют многомерный (и, следовательно, нереляционный) набор данных (нередко называемый гиперкубом или метакубом), оси которого содержат параметры, а ячейки — зависящие от них агрегатные данные1. Вдоль каждой оси данные могут быть организованы в виде иерархии, представляющей различные уровни их детализации. Благодаря такой модели данных пользователи могут формулировать сложные запросы, генерировать отчеты, получать подмножества данных.

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP — это ключевой компонент организации хранилищ данных. Концепция OLAP была описана в 1993 году Эдгаром Коддом, известным исследователем баз данных и автором реляционной модели данных (см. E.F. Codd, S.B. Codd, and C.T.Salley, Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate. Technical report, 1993). В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information — быстрый анализ разделяемой многомерной информации), включающий следующие требования к приложениям для многомерного анализа:

· предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;

· возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;

· многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;

· многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это — ключевое требование OLAP);

· возможность обращаться к любой нужной информации независимо от ее объема и места хранения.

Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах. Но прежде чем говорить о различных реализациях этой функциональности, давайте рассмотрим, что же представляют собой кубы OLAP с логической точки зрения.

Многомерные кубы

В данном разделе мы более подробно рассмотрим концепцию OLAP и многомерных кубов. В качестве примера реляционной базы данных, который мы будем использовать для иллюстрации принципов OLAP, воспользуемся базой данных Northwind, входящей в комплекты поставки Microsoft SQL Server или Microsoft Access и представляющей собой типичную базу данных, хранящую сведения о торговых операциях компании, занимающейся оптовыми поставками продовольствия. К таким данным относятся сведения о поставщиках, клиентах, компаниях, осуществляющих доставку, список поставляемых товаров и их категорий, данные о заказах и заказанных товарах, список сотрудников компании. Подробное описание базы данных Northwind можно найти в справочных системах Microsoft SQL Server или Microsoft Access — здесь за недостатком места мы его не приводим.