Первая механическая счетная машина была изготовлена в 1623 г. профессором математики Вильгельмом Шиккардом (1592—1636). В ней были механизированы операции сложения и вычитания, а умножение и деление выполнялось с элементами механизации. Но машина Шиккарда вскоре сгорела во время пожара. Поэтому биография механических вычислительных устройств ведется от суммирующей машины, изготовленной в 1642 г. Блезом Паскалем.
В 1673 г. другой великий математик Готфрид Лейбниц разработал счетное устройство, на котором уже можно было умножать и делить.
В 1880г. В.Т. Однер создает в России арифмометр с зубчаткой с переменным количеством зубцов, а в 1890 году налаживает массовый выпуск усовершенствованных арифмометров, которые в первой четверти XIX в. были основными математическими машинами, нашедшими применение во всем мире. Их модернизация "Феликс" выпускалась в СССР до 50-х годов.
Мысль о создании автоматической вычислительной машины, которая бы работала без участия человека, впервые была высказана английским математиком Чарльзом Бэббиджем (1791—1864) в начале XIX в. В 1820—1822 гг. он построил машину, которая могла вычислять таблицы значений многочленов второго порядка.
Считается, что первую механическую машину, которая могла выполнять сложение и вычитание, изобрел в 1646г. молодой 18-летний французский математик и физик Блез Паскаль. Она называется "паскалина".
Эта машина предназначалась для работы с 6-8 разрядными числами и могла только складывать и вычитать, а также имела лучший, чем все до этого, способ фиксации результата. Машина Паскаля имела размеры 36/13/8 сантиметров, этот небольшой латунный ящичек было удобно носить с собой. Она имела несколько специальных рукояток, при помощи которых осуществлялось управление, имела ряд маленьких колес с зубьями. Первое колесо считало единицы, второе - десятки, третье – сотни и т.д. Сложение в машине Паскаля производится вращением колес вперед. Двигая их обратно, выполняется вычитание.
Хотя “паскалина” вызвала всеобщий восторг, она не принесла изобретателю богатства. Тем не менее, изобретенный им принцип связанных колес явился основой, на которой строилось большинство вычислительных машин на протяжении следующих трех столетий. Инженерные идеи Паскаля оказали огромное влияние на многие другие изобретения в области вычислительной техники.
Основной недостаток “паскалины” состоял в неудобстве выполнения на ней всех операций, за исключением простого сложения. Первая машина, позволявшая легко производить вычитание, умножение и деление, была изобретена позже в том же XVII в. в Германии. Заслуга этого изобретения принадлежит Готфриду Вильгельму Лейбницу.
Следующим шагом было изобретение машины, которая могла выполнять умножение и деление. Такую машину изобрел в 1671 г. немец Готфрид Лейбниц. Находясь в Париже, Лейбниц познакомился с голландским математиком и астраномом Христианом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство, которое облегчило ба расчеты. “Поскольку это недостойно таких замечательных людей, подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины”.
Хоть машина Лейбница и была похожа на "паскалину", она имела движущуюся часть и ручку, с помощью которой можно было крутить специальное колесо или цилиндры, расположенные внутри аппарата. Такой механизм позволил ускорить повторяющиеся операции сложения, необходимые для умножения. Самоповторение тоже осуществлялось автоматически.
В 1673 г. он изготовил механический калькулятор. Но прославился он прежде всего не этой машиной, а созданием дифференциального и интегрального исчисления. Он заложил также основы двоичной системы счисления, которая позднее нашла применение в автоматических вычислительных устройствах.
Следующая ступень развития вычислительных устройств как будто не имела ничего общего с числами, по крайней мере, вначале. На протяжении всего XVIII в. на французских фабриках по производству шелковых тканей велись эксперименты с различными механизмами, управляющими станком при помощи перфорационной ленты, перфорационных карт или деревянных барабанов. Во всех трех системах нить поднималась или опускалась в соответствии с наличием или отсутствием отверстий — так создавался желаемый рисунок ткани.
Французский ткач и механик Жозеф Жаккар создал первый образец машины, управляемой введением в нее информацией. В 1802 г. он построил машину, которая облегчила процесс производства тканей со сложным узором. При изготовлении такой ткани нужно поднять или опустить каждую из ряда нитей. После этого ткацкий станок протягивает между поднятыми и пущенными нитями другую нить. Затем каждая из нитей опускается или поднимается в определенном порядке и станок снова пропускает через них нить. Этот процесс многократно повторяется до тех пор, пока не будет получена нужная длина ткани с узором. Для задания узора на ткани Жаккар использовал ряды отверстий на картах. Если применялось десять нитей, то в каждом ряду карты предусматривалось место для десяти отверстий. Карта закреплялась на станке в устройстве, которое могло обнаруживать отверстия на карте. Это устройство с помощью щупов проверяло каждый ряд отверстий на карте.
Работа станка программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока. Информация на карте управляла станком.
Из всех изобретателей прошлых столетий, внесших тот или иной вклад в развитие вычислительной техники, ближе всего к созданию компьютера в современном его понимании подошел англичанин Чарльз Бэббидж.
Разностная машина Чарльза Бэббиджа
В 1812 году английский математик Чарльз Бэббидж начал работать над так называемой разностной машиной, которая должна была вычислять любые функции, в том числе и тригонометрические, а также составлять таблицы. В 1822 г. Чарльз Бэббидж построил счетное устройство, которое назвал разностной машиной. В эту машину вводилась информация на картах. Для выполнения ряда математических операций в машине применялись цифровые колеса с зубьями. Однако из-за нехватки средств эта машина не была закончена, и сдана в музей Королевского колледжа в Лондоне, где хранится, и по сей, день.
Однако эта неудача не остановила Бэббиджа, и в 1834 году он приступил к новому проекту – созданию Аналитической машины, которая должна была выполнять вычисления без участия человека. Для этого она должна была уметь выполнять программы, вводимые с помощью перфокарт (карт из плотной бумаги с информацией, наносимой с помощью отверстий, как в ткацких станках), и иметь “склад” для запоминания данных и промежуточных результатов (в современной терминологии - память). С 1842 по 1848 год Бэббидж упорно работал, расходуя собственные средства. Аналитическая машина в отличие от своей предшественницы должна была не просто решать математические задачи одного определенного типа, а выполнять разнообразные вычислительные операции в соответствии с инструкциями, задаваемыми оператором. В действительности это не что иное, как первый универсальный программируемый компьютер. Но если Разностная машина имела сомнительные шансы на успех, то Аналитическая машина и вовсе выглядела нереалистичной. Её просто невозможно было построить и запустить в работу. В своем окончательном виде машина должна была быть не меньше железнодорожного локомотива. Ее внутренняя конструкция представляла собой беспорядочное нагромождение стальных, медных и деревянных деталей, часовых механизмов, приводимых в движение паровым двигателем. Малейшая нестабильность какой-нибудь крошечной детали приводила бы к стократно усиленным нарушениям в других частях, и тогда вся машина пришла бы в негодность.
К сожалению, он не смог довести до конца работу по созданию Аналитической машины – она оказалась слишком сложной для техники того времени. Но заслуга Бэббиджа в том, что он впервые предложил и частично реализовал, идею программно-управляемых вычислений. Именно Аналитическая машина по своей сути явилась прототипом современного компьютера.
В 1985 г. сотрудники Музея науки в Лондоне решили выяснить, наконец, возможно ли на самом деле построить вычислительную машину Бэббиджа. После нескольких лет напряженной работы старания увенчались успехом. В ноябре 1991 г. незадолго до двухсотлетия со дня рождения знаменитого изобретателя, разностная машина впервые произвела серьезные вычисления.
Лишь через 19 лет спустя после смерти Бэббиджа один из принципов, лежащий в основе Аналитической машины, — использование перфокарт—нашел воплощение в действующем устройстве. Это был статистический табулятор, построенный американцем Германом Холлеритом с целью ускорить обработку результатов переписи населения США в 1890 г.
В конце XIX в. были созданы более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. Это сочетание делало машину настолько работоспособной, что она получила широкое применение в своё время. Например, при переписи населения в США, проведенной в 1890 г., Холлерит, с помощью своих машин, смог выполнить за три года то, что вручную делалось бы в течении семи лет, причем гораздо большим числом людей.