· Фаза 11. Строится экспертная оценка финальной доходности и риска по индексам стандартного вида.
Вышеизложенная процедура базируется на применениии специализированных моделей и методик, которые рассмотрены далее.
4.2. Модели и методы прогнозирования фондовых индексов
4.2.1. Классификация экономических регионов и индексов. Обозначения
Все индексы, которые нам следует прогнозировать и наблюдать, подразделяются на три большие группы:
· Индексы долговых обязательств (к ним относим государственные облигации, облигации субъектов региона, банковские депозиты, корпоративные обязательства и эмиссионные ипотечные ценные бумаги);
· Индексы акций (к ним относим собственно акции с высокой и низкой капитализацией (1-ый и второй эшелоны соответственно), а также паи взаимных индексных фондов – разрешенные активы для пенсионных инвестиций по законодательству РФ);
· Индексы макроэкономических факторов (к ним относим валовый внутренний продукт, инфлятор, кросс-курс валюты по отношению к рублю, а также PE Ratio).
Также мы предполагаем, что существует взаимно однозначное соответствие между индексом и экономическим регионом, который мы далее будем называть держателем индекса. Предполагаем, что все бумаги или тенденции, участвующие в формировании того или иного индекса, выпущены или имеют место на географической территории региона – держателя индекса. Выделяем следующие регионы, представляющие интерес для исследований:
· США и Канада (US);
· Россия (RU);
· Европейский союз (EC);
· Англия (GB);
· Япония (JAP);
· Регион развивающихся стран (EMM).
В нашей монографии приводится пример прогнозирования индеков только для региона US.
В зависимости от типа индекса, варьируются применяемые модели и методики прогнозирования. Изложим эти модели и методики последовательно, от фазы к фазе процесса прогнозирования, как они перечислены в конце предыдущего раздела книги.
В процессе изложения математических соотношений будем применять следующие обозначения. Точка после символа (
Также мы обозначаем:
· t – дискретное прогнозное время (где каждый отсчет соответствует временному интервалу – кванту дискретизации), tнач – начальный отсчет прогноза, tкон – конечный отсчет прогноза, DT – размер кванта дискретизации (по умолчанию 1 квартал);
· xA,B,N – доли активов акций облигаций и нефондовых активов в обобщенном инвестиционном портфеле соответственно; Dx – размер ребалансирования доли соответствующего актива при переходе к следующему временному отсчету прогноза;
·
·
· аi, bij – параметры модели рациональной динамики инвестиций (таблицы 4.5 и 4.6);
·
·
·
·
·
·
·
·
·
·
·
4.2.2. Модель и методика для фазы 1 (старт)
Для этой фазы мы устанавливаем начальное и конечное прогнозное время (tнач и tкон соответственно), фиксируются известные действительные значения I(tнач), GDP(tнач),
xA(tнач) = xA0, xB(tнач) = xB0, xN(tнач) = xN0. (4.8)
В ходе моделирования обнаружилось, что когда на рынке доминируют отзывные тенденции, стартовое размещение активов вырождено, и невозможно отследить динамику портфеля, чувствительность его долей к колебаниям экзогенных факторов. Поэтому в модели нагляднее в любом случае стартовать с контрольной портфельной точки (по 50% акций и облигаций в портфеле). Если отзывные тенденции перетока капитала сохранятся, то портфель быстро выродится, и это можно будет наблюдать в динамике.
Для всех индексов, отвечающих данному экономическому региону, устанавливается их стартовое значение P(tнач).
Привязка дискретного времени к непрерывному осушествляется таким образом, что значения индексов и параметров для дискретного времени соответствуют значениям последнего торгового дня соответствующего квартала.
По обобщенному инвестиционному портфелю устанавливаются текущие значения доходностей и рисков модельных классов акций и облигаций r(tнач) и s(tнач), а также значение модифицированного показателя Шарпа Sh(tнач) на основании анализа недавних исторических данных (достаточно последнего квартала истории перед прогнозом; оценка Sh(tнач) берется тогда как среднее по трем месяцам предшествующей истории обобщенного инвестиционного портфеля).
Устанавливается текущее прогнозное время t = tнач , и процесс переходит на фазу 2 – анализ макроэкономических тенденций.
4.2.3. Модель и методика для фазы 2
В силу существенной нестационарности макроэкономических процессов (допущение экспертной модели) мы не беремся прогнозировать их с помощью известных методов авторегрессионного анализа, как, скажем, в моделях ALM [129]. Взамен мы предлагаем искать их в форме полосы с прямолинейными границами вида.
При этом