Смекни!
smekni.com

Планирование и финансовые решения в рамках плана 16 1 Финансовый анализ и его роль в принятии решений 21 (стр. 3 из 52)

Что такое сегодня «высокая процентная ставка по кредитам»? Мы не узнаем об этом ничего, пока не опросим некоторую группу предприятий, пользующихся кредитными ресурсами банков. Все эти предприятия пользуются кредитами на разных условиях: чем надежнее заемщик, тем меньшую ставку по кредиту он может себе позволить. Все заемщики разные, однако в ходе сводного исследования вырисовывается некая целостная картина (обычно интерпретируемая как гистограмма испытаний). Становится возможным определить среднюю ставку заимствований, вокруг которой группируются все остальные ставки. И, чем далее вправо по оси Х (уровень процентной ставки) мы будем двигаться от определенного среднего значения, тем больше оснований мы получаем заявлять, что данная ставка – «высокая». Так мы можем выделить три группы ставок: «высокая», «средняя», «низкая» - и разнести все имеющиеся ставки по выделенным классам (кластерам) двумя путями. Мы можем сделать это вполне точно (хотя и грубо), установив соответствующие интервалы на оси Х, и принадлежность к тому или иному интервалу будет вызывать однозначную словесную оценку. Если делать такую же работу более тщательно, то следует описать нашу уверенность (неуверенность) в классификации. Тогда четкие множества интервалов преобразуются в нечеткие подмножества с размытыми границами, а степень принадлежности той или иной процентной ставки к данному подмножеству определяется функцией принадлежности, построенной по специальным правилам.

Таким образом, наметились пути второго стратегического отступления науки в ходе исследования неопределенности в экономике. Если раньше ученые вынуждены были отказаться от классической вероятности в пользу вероятности субъективной, то теперь и субъективная вероятность перестает устраивать исследователя. Потому что в ней оказывается слишком много субъективной экспертной оценки и слишком мало – информации о том, как эта оценка была получена.

Третьего стратегического отступления не предвидится, потому что некуда больше отступать. Мы отступаем потому, что хотим сохранить адекватность используемых моделей и требуемую степень их достоверности. Мы хотим быть честными, поэтому постепенно выводим субъективные вероятности из оборота, заменяя их нечеткими множествами. И тут возникает возможность для перегруппировки и стратегического наступления на неопределенность. Причин к этому несколько:

· нечеткие множества идеально описывают субъектную активность ЛПР;

· нечеткие числа (разновидность нечетких множеств) идеально подходят для планирования факторов во времени, когда их будущая оценка затруднена (размыта, не имеет достаточных вероятностных оснований). Таки образом, все сценарии по тем или иным отдельным факторам могут быть сведены в один сводный сценарий в форме треугольного числа, где выделяются три точки: минимально возможное, наиболее ожидаемое и максимально возможное значения фактора. При этом веса отдельных сценариев в структуре сводного сценария формализуются как треугольная функция принадлежности уровня фактора нечеткому множеству «примерного равенства среднему»;

· мы можем в пределах одной модели формализовывать как особенности экономического объекта, так и познавательные особенности связанных с этим объектом субъектов менеджера и аналитика;

· мы можем вернуть вероятностные описания в свой научный обиход, как вероятностные распределения с нечеткими параметрами [53]. Нечеткость параметров распределения обусловлена тем, что классически понимаемой статистической выборки наблюдений нет, и для анализа мы пользуемся научной категорией квазистатистики (которую я ввел в [53]). При таком подходе треугольные параметры распределения устанавливаются на основе процедуры установления степени правдоподобия. Таким образом, наметился путь для синтеза вероятностных и нечетко-множественных описаний.

Собственно, вся настоящая монография как раз и посвящена обоснованию применимости нечетко-множественных описаний в фондовом менеджменте. В ней рассматривается комплекс вопросов, объединенных общей темой: как инвестировать в расплывчатых, информационно скудных условиях. Монография состоит из настоящего введения, пяти глав, заключения и пяти приложений.

Глава 1 посвящена обзору теории финансового менеджмента. Финансовые решения рассматриваются с системных позиций, как результат анализа, планирования, прогнозирования и управления. Анализируется роль неопределенности при принятии финансовых решений и сопутствующий таким решениям риск. В качестве специализированного объекта научного исследования рассматривается поведение лиц, принимающих финансовые решения (инвестора, менеджера, эксперта).

В главе 2 мною рассматриваются теоретические вопросы оценки инвестиционной привлекательности фондовых активов. В связи с тем, что информация по эмитентам ценных бумаг является неоднородной, то количественной статистики по фактором финансовой отчетности эмитентов нет. Следовательно, чтобы сделать заключение об уровне факторов, необходимо прибегать к нечетко-множественным формализмам.

В главе 3 ставится и и решается в нечетко-множественной постановке задача оптимизации фондового портфеля, при размытых факторах доходности и риска активов.

Глава 4 посвящена проблематике прогнозирования фондовых индексов. Излагается подход, альтернативный хорошо известным в фондовом менеджменте подходам к прогнозированию GARCH/ARCH.

В финальной главе 5 раскрывается существо внедрения результатов научной работы автора в практику управления накопительной составляющей трудовых пенсий от лица Пенсионного фонда России. Дается краткое описание программного продукта «Система оптимизации фондового портфеля», в основу которого легли разработанные и представленные здесь методы.

Все научные основы теории нечетких множеств, используемые мною в монографии, составляют Приложение 1 к настоящей монографии. Приложение 1 воспроизводит главу 2 моей монографии [53]. Поэтому всегда, когда у читателя возникает трудность в интерпретации того или иного понятия теории нечетких множеств, я советую ему заглянуть в упомянутое приложение, где все требуемые формализмы надлежащим образом введены.

Приложения 2 – 4 яваляются справочными и поясняют содержание глав с соответствующими номерами. Приложение 5 содержит краткий термино-логический словарь

В завершение настоящего введения к своей монографии я хочу поблагодарить:

· Господа Бога – за все;

· свою мать Татьяну и отца Олега – за предоставленную возможность участвовать в делах этого мира;

· жену Нонну – за терпение, сочувствие и огромную помощь;

· Захаряна Гамлета Оганезовича – за спонсорскую помощь и поддержку;

· моего учителя, академика Российской академии безопасности, д.т.н., профессора Г.Н.Черкесова – за путевку в жизнь научного работника;

· профессоров Джейма Бакли [113], Ричарда Хоппе [123] и Эдварда Альтмана [107] – за содействие моим научным изысканиям;

· компанию Артифишел Лайф Рус [108] – за то, что профиль моей работы в этой компании определил содержание всех моих будущих исследований в области фондового менеджмента;

· компанию Сименс Бизнес Сервисез (Siemens Business Services Russia) [148] – за то, что разработанные мною методы легли в основу программных средств компании Siemens Business Services Russia, предназначенных для портфолио-менеджмента средств накопительной составляющей трудовых пенсий от лица Пенсионного Фонда Российской Федерации;

· Международный научный фонд экономических исследований академика Н.П.Федоренко – за финансовую поддержку моих исследований в рамках гранта.


Глава 1. Фондовый менеджмент как разновидность финансового менеджмента

1.1. Управление финансами на основе анализа, планирования и прогнозирования

С точки зрения системы финансов хозяйствующего субъекта, вся финансовая деятельность – это генерация финансовых результатов как откликов на суперпозицию управленческих решений лиц, эти решения принимающих (ЛПР), и внешних рыночных сигналов, обладающих индетерминированной (стохастической природой), см. рис. 1.1 (на рис. 1.1 толстыми стрелками с тенями отмечены процессы управления финансами со стороны ЛПР и внешней рыночной среды, а тонкими стрелками отмечены информационные потоки, концентрирующиеся на ЛПР и служащие основой для принятия финансовых решений.). Так, например, неоптимальное решение финансового менеджера о сокращении инвестиций в запасы готовой продукции на складе, в суперпозиции с резко возросшим спросом на товары данного вида, вызывает дефицит и соответствующую упущенную выгоду, что может обернуться убытками отчетного периода.

Рис. 1.1. Финансы как кибернетическая система

Поэтому грамотный финансовый менеджмент – это управление финансами в целях достижения планируемых финансовых результатов с учетом существенной неопределенности относительно будущих параметров рыночного окружения хозяйствующего субъекта. Здесь в качестве цели финансовой системы выступают планируемые финансовые результаты хозяйствующего субъекта, и предполагается, что существуют: а) прогнозы динамики внешних по отношению к системе рыночных факторов; б) прогнозы финансовых результатов хозяйствующего субъекта на основе комплексной прогнозной модели и сформированные на основе этих прогнозов финансовые планы; б) процедуры оценки (распознавания) уровня достигнутых финансовых результатов (процедуры финансового анализа). Рассмотрим все вышеперечисленные аспекты по порядку.

1.1.1. Прогнозирование финансового состояния хозяйствующих субъектов и организованных рынков