Смекни!
smekni.com

П. л чебышев (стр. 1 из 3)

Министерство образования Российской Федерации

Средняя общеобразовательная школа №6

Реферат

на тему:

П.Л Чебышев –

отец Петербургской математической школы.

Выполнил ученик 8-г класса

Мальцев М. М.

Проверила учитель математики

Малова Т.А

Муром 2011

План работы

Введение

1. Основная часть

1.1. Теория чисел.

1.2. Распределение простых чисел.

1.3. Постулат Бертрана.

1.4. Теория вероятностей

1.5. Теория приближения функций.

1.6. Учёная деятельность Чебышева

1.7. Вклад Петербургской математической школы в развитие страны

2. Заключение

3.Список используемой литературы

Введение

В этом году 190 лет со дня рождения великого математика и механика Пафнутия Львовича Чебышева, замечательного ученого и педагога, который вывел отечественную математическую науку на мировой уровень. Пафнутий Львович Чебышев оставил неизгладимый след в истории мировой науки и в развитии русской культуры.

Многочисленные научные труды почти во всех областях математики и прикладной механики, труды, глубокие по содержанию и яркие по своеобразию методов исследования, создали П. Л. Чебышеву славу одного из величайших представителей математической мысли. Огромное богатство идей разбросано в этих работах, и, несмотря на то, что пятьдесят лет прошло со дня смерти их творца, они не потеряли ни своей свежести, ни актуальности, и их дальнейшее развитие продолжается в настоящее время во всех странах земного шара, где только бьётся пульс творческой математической мысли.

Я решил выбрать эту тему так как мне нравиться математика и я уважаю ученых которые развивали её, поэтому мой реферат именно на эту тему.

После смерти Эйлера в 1783 году уровень математических исследований в

Петербурге сильно снизился. Новый подъем обозначился лишь в 20-е годы XIX века. Он определился научной и организаторской деятельностью М. В. Остроградсккого (1801-1861) и В. Я. Буняковского (1804-1889), а позднее П. Л. Чебышёва (1821-1894). К середине XIX века деятельность Остроградского и Буняковского, их учеников, многие из которых стали крупными специалистами в различных областях математики, техники, определила новый подъем математики в России, особенно в Петербурге. Начал складываться коллектив творчески работающих математиков, ведущее место в котором к концу жизни Остроградского занял П. Л. Чебышёв. Научная деятельность Чебышёва заслуживает внимания потому, что она является основой, началом быстрого развития математики во второй половине XIX века в Петербурге. Чебышёв и его ученики образовали ядро научного коллектива математиков, за которым

закрепилось название Петербургской математической школы.

Пафнутий Львович Чебышёв окончил в 1841 году Московский университет. На конкурсе студенческих работ за сочинение на тему «Вычисление корней уравнения» он был награжден серебряной медалью. Будучи оставлен при университете, защитил в 1846 году магистерскую диссертацию «Опыт элементарного анализа теории вероятностей». В следующем году Чебышёв переехал в Петербург и начал работать в университете. Здесь в 1849 году он защитил докторскую диссертацию: «Теория сравнений» и работал профессором в течение многих лет, до 1882 года. В Петербургской академии наук деятельность Чебышёва началась в 1853 году, когда его избрали адъюнктом.

В научном наследии Чебышёва насчитывается более 80 работ. Оно оказало огромное влияние на развитие математики, в особенности на формирование Петербургской математической школы. Для работ Чебышёва характерны тесная связь с практикой, широкий охват научных проблем, строгость изложения, экономичность математических средств, для достижении крупных результатов. Математические достижения Чебышёва в основном получены в следующих областях: теория чисел, теория вероятностей, проблема наилучшего приближения функций и общая теория полиномов, теория интегрирования функций.

Исследования Чебышева относятся к теории приближения функций многочленами, интегральному исчислению, теории, чисел, теории вероятностей, теории механизмов и многим др. разделам математики и смежных областей знания. Чебышев создал ряд основных, общих методов и выдвинул идеи, наметившие ведущие направления в этих областях науки, их дальнейшем развитии. Он стремился увязать проблемы математики с принципиальными вопросами развития естествознания и техники, оставив многочисленные работы в области математического анализа, теории машин и механизмов и др. Длительное время Чебышев участвовал в работе артиллерийского отделения военного учёного комитета, решая задачи, с которыми были тесно связаны его исследования по квадратурным формулам и по теории интерполирования, что имело важное значение для развития артиллерийских наук. Труды Чебышева нашли широкое признание во всём мире. Он был избран членом многих Академий Наук: Берлинской (1871), Болонской (1873), Парижской (1874), Шведской (1893), Лондонского королевского общества (1877) и почётным членом других русских и иностранных научных обществ, академий и университетов. В честь Чебышева Академия Наук СССР учредила в 1941 премию.

Теория чисел.

В теории чисел Чебышёв начал работать в 40-х годах прошлого века. Началось с того, что академик Буняковский привлек его к комментированию и изданию сочинений Эйлера по теории чисел. Одновременно Чебышёв готовил монографию по теории сравнений и ее приложениям, чтобы представить ее в качестве докторской диссертации. К 1849 году обе эти задачи были выполнены и соответствующие работы опубликованы. В качестве приложений к своей «Теории сравнений» Чебышёв опубликовал мемуары «Об определении числа простых чисел, не превосходящих данной величины».

Распределение простых чисел.

Проблема распределения простых чисел в ряду чисел натуральных - одна из самых старых в теории чисел. Она известна со времен древнегреческой математики. Первый шаг к ее решению сделал Евклид, доказав теорему, что в натуральном ряду имеется неограниченно много простых чисел. До тех пор, пока Эйлер не привлек средства математического анализа, ее решение практически не продвигалось. Новое доказательство, по существу, не давало нового результата, но включало новые методы. Идея доказательства Эйлера такова: из конечности множества простых чисел следует сходимость гармонического ряда, т.к. он тогда представляется как произведение конечного числа геометрических прогрессий. Лишь в 1837 году Дирихле обобщил теорему Евклида, доказав, что в любой арифметической прогрессии {a+nb}, где a и b взаимно просты, содержится бесконечно много простых чисел. В период 1798-1808 годов Лежандр, изучив таблицы простых чисел до миллиона, вывел эмпирически, что число простых чисел в отрезке [2,х] p(x) выражается формулой x/p(x)=ln x - 1.08366.

Чебышёв доказал, что формула Лежандра неточна, исследовав свойства функции p(x) и показал, что истинный порядок роста этой функции тот же, что функции x/ln x. Более того, им были найдены уточнения: отношение

заключено между 0.92129 и 1.10555.

Открытие Чебышёва произвело очень большое впечатление. Многие математики работали над улучшением его результатов. Сильвестр в своих статьях 1881 и 1892 годов сузил границы промежутка до [0.95695, 1.04423]. Дальнейших сужений добились Шур (1929) и Брейш (1932).

Чебышёв нашел также интегральные оценки для значений p(х). Ему удалось доказать, что с ростом х значение p(х) колеблется около. Только в 1896 году Адамар и Валле-Пуссен доказали следующую предельную теорему. Уже в близкое нам время (1949) Сельберг нашел другое доказательство этой асимптотической закономерности. В 1955 году А. Г. Постников и Н. П. Романов упростили громоздкие рассуждения Сельберга.

Постулат Бертрана.

Французский математик Бертран в своих работах (1845) опирался на следующее утверждение: для любого натурального n>1 между n и 2n есть простое число. Бертран пользовался им без доказательства. Утверждение было доказано Чебышёвым(1850), поэтому его иногда называют теоремой Чебышёва. Основная идея доказательства - оценивание степеней простых чисел, на которые делится биноминальный коэффициент через запись в его в p-ичной системе счисления (там имеет место красивая аналогия с признаком делимости на 9 в десятичной системе — впрочем, и без такой записи вполне можно обойтись).В действительности, оценку можно усилить: для n>5 между n и 2n есть целых два простых числа. Можно получать и более сильные неравенств.

Исследования о расположении простых чисел в натуральном ряду привели также к появлению работ Чебышёва по теории квадратичных форм. В 1866 году вышла его статья «Об одном арифметическом вопросе», посвященная диофантовым приближениям, т.е. целочисленным решениям диофантовых уравнений посредством аппарата непрерывных дробей.

Теория вероятностей

К теории вероятностей Чебышёв обратился еще в молодые годы, посвятив ей магистерскую диссертацию. В те времена в теории вероятностей имел место своеобразный кризис. Дело в том, что основные закономерности этой науки были в основном найдены еще в XVIII веке. Имеется в виду закон больших чисел; предельная теорема Муавра-Лапласа - предельный закон вероятностей отклонения числа x появлений случайного события от математического ожидания, a этого числа при n опытах с вероятностью p; введение понятия дисперсии. Осознание широкой приложимости этих закономерностей привело к попыткам применить их даже к социальной практике людей, т.е. за пределами обоснованной области допустимых приложений. Это вызвало большое число путаных, необоснованных и ошибочных выводов, что отразилось на научной репутации теории вероятностей. Без солидного обоснования понятий и результатов дальнейшее развитие этой науки сделалось невозможным.