Смекни!
smekni.com

«Направленный взрыв.» (стр. 3 из 8)

Если бросать камешек за камешком в одну и ту же точку в покоящейся воде, расходящиеся круги на поверхности будут концентрическими.

Если вода движется с небольшой скоростью v, картина несколько исказится — центры кругов сместятся, но всё же будут находиться внутри кругов. Когда скорость движения воды увеличится, центры приблизятся к краю кругов.

Рис1.

Наконец, когда скорость движения воды совпадёт со скоростью движения волны, все окружности, образованные волнами, будут соприкасаться в одной точке. Если скорость воды превысит скорость волны, круги на поверхности заполнят область, ограниченную двумя лучами — огибающими этих кругов.

Вне этой области поверхность воды а останется спокойной, волновые возмущения туда не успеют дойти. Наиболее сильно будет возмущена вода вблизи двух огибающих.(рис 1)

Аналогичный процесс происходит и в воздухе.

Возьмём систему отсчёта, в которой движется воздух, а в покое находится тело (например, самолёт).

Если скорость самолёта сравнима со скоростью звука, но не превышает её, то виден бесшумно движущийся самолёт и слышен звук его двигателей. Однако направление, откуда доносится этот звук, слегка отстаёт от самолёта.

Если самолёт летит со сверхзвуковой скоростью, возмущения, создаваемые им, остаются внутри области, называемой конусом Маха. Пока находишься вне этого конуса, кажется, что самолёт движется бесшумно. Когда поверхность конуса Маха достигает ваших ушей, раздаётся резкий неприятный хлопок, и только затем становится слышен шум двигателей самолёта.

Причиной хлопка, очень похожего на шум взрыва, является внезапно возросшее давление. Возмущения, которые создаются движущимся самолётом, как бы скапливаются на поверхности конуса Маха, за счёт чего давление резко увеличивается.

Такое внезапное скачкообразное изменение давления называется ударной волной. Она образуется при движении со сверхзвуковой скоростью и при взрывах.

С изучением сверхзвукового течения связан ряд важных практических проблем, возникающих при создании самолётов, ракет и артиллерийских снарядов со сверхзвуковой скоростью полёта, паровых и газовых турбин, высоконапорных турбокомпрессоров, аэродинамических труб для получения потоков со сверхзвуковой скоростью и др.

Особенности сверхзвукового течения газа имеют ряд качественных отличий от дозвуковых течений. Прежде всего, слабое возмущение в газе распространяется со скоростью звука, влияние слабого изменения давления, вызываемого помещенным в равномерный сверхзвуковой поток источником возмущений (например, телом), не может распространяться вверх по потоку, а сносится вниз по потоку со скоростью v > а, оставаясь внутри т. н. конуса (рис 2) возмущений COD . В свою очередь, на данную точку О потока могут оказывать влияние слабые возмущения, идущие только от источников, расположенных внутри конуса АОВ с вершиной в данной точке и с тем же углом при вершине, что и у конуса возмущений, но обращенного противоположно ему. Если установившийся поток газа неоднороден, то области возмущений и области влияния ограничены не прямыми круглыми конусами, а коноидами — конусовидными криволинейными поверхностями с вершиной в данной точке.

Рис2.

Сверхзвуковое течение - течение газа, при котором в рассматриваемой области скорости v его частиц больше местных значений скорости звука a.

Именно сверхзвуковое течение газа создает ударную волну.

Таким образом, течение газов, или движение тел, со сверхзвуковой скоростью порождает мощную ударную волну, которая распространяется в окружающем пространстве со скоростью выше скорости звука в данной среде.

Ударная волна распространяется по невозмущённому веществу со сверхзвуковой скоростью u0> a0 (где a0 — скорость звука в невозмущённом веществе) тем большей, чем больше интенсивность ударной волны, то есть чем больше (p1 — p0)/ p0. При стремлении интенсивности ударной волны к 0 скорость её распространения стремится к a0. Скорость ударной волны относительно сжатого газа, находящегося за ней, является дозвуковой: u1< a1 (a1— скорость звука в сжатом газе за Ударной волной).

При переходе через фронт ударной волны меняются давление, температура, плотность вещества среды, а также скорость её движения относительно фронта ударной волны. Все эти величины изменяются не независимо, а связаны с одной-единственной характеристикой ударной волны, числом Маха.

Число́ Ма́ха представляет собой отношение скорости течения волны к местной скорости распространения звука в движущейся среде - названо по имени австрийского ученого Эрнста Маха.

Число Маха: M=v/a, где v— скорость течения волны, а a— скорость звука

При прохождении газа через ударную волну его параметры меняются очень резко и в очень узкой области. Можно с большой точностью заменить фронт ударной волны - поверхностью разрыва, считая, что при прохождении через неё параметры газа изменяются скачком (отсюда название "скачок уплотнения").

§ 11 Скачок уплотнения.[2]

В свободном пространстве звуковая волна бежит от источника во все стороны; нам для дальнейших рассуждений удобнее считать, что звук бежит по трубе: тогда все объемы сжимаются и расширяются подобным друг другу образом.

Что же произойдет, если поршень будет вдвигаться и тем самым сжимать газ в трубе?.



Рис. 3.

Пусть поршень начинает вдвигаться очень медленно. Тогда передняя граница сжатого газа побежит со скоростью звука по газу несжатому. Постепенно поршень будет ускоряться. Образуется волна сжатия, в которой воздух адиабатически нагрет и движется вправо (рис. 3). Поэтому возмущение из волны сжатия непременно нагонит ее переднюю границу: в нагретом воздухе скорость звука больше, и, кроме того, она складывается со скоростью течения. Следовательно, передняя граница волны сжатия непременно «узнает» о том, что поршень движется ускоренно, сжимая газ.

Можно нарисовать профиль волны сжатия, то естьраспределение давления в ней в зависимости от координаты (рис. 4а). Допустим, что на этот профиль накладывается небольшой «выступ» давления а. Он не может остаться на месте даже относительно того объема газа, в котором возник, а как всякое сжатие газа побежит по нему со скоростью звука, переменной на профиле, от точки к точке. Но любую точку, например, б, можно рассматривать как небольшой выступ над хордой, обозначенной пунктиром. Итак, каждое сжатие газа распространяется по нему с местной скоростью звука, причем на профиле, изображенном на рис. 4а, большее давление догонит и даже, казалось бы, перегонит меньшее. Но если бы так случилось, профиль, изображенный на рис. 4а, перестроился бы в профиль, соответствующий рис. 4б, который отвечает физически абсурдной ситуации, когда в одной и той же точке, например, А, давление газа имеет на профиле два или даже три значения (р, и рг на рис. 4б, р,, рг и рг на рис. 4в). Очевидно, что на самом деле так получиться не может, а осуществится нечто совсем иное.

Рис. 4б. Рис. 4в.

Прежде, чем рассмотреть, что произойдет в газе, полезно обратиться к другому, очень сходному случаю волнового движения — морскому прибою. Оказывается, что законы распространения волн по поверхности воды в неглубоком водоеме очень похожи на законы распространения волн сжатия в газе. Одни волны, как говорят, моделируют другие. Все, вероятно, знают, что электрический колебательный контур из емкости и самоиндукции моделирует колебания груза, подвешенного на пружине. Роль упругого звена играет емкость, роль массы — самоиндукция. Несмотря на совершенно разную физическую природу явлений, они подчиняются закономерностям одинакового вида. Это и есть моделирование.

Не всякое волновое движение в жидкости моделирует волны сжатия в газе. Например, мелкая рябь на поверхности имеет другой закон распространения. Аналогия возникает только тогда, когда длина волны сравнима с глубиной водоема. Тогда высота уровня воды в данной точке есть величина, аналогичная давлению в газе. Профилю давления в газе отвечает зримый профиль волны в воде.

Рассмотрим, как возникают в прибое волны, похожие по профилю на изображенные на рис. 46. Если волны набегают на отлогий берег, их гребни имеют большую скорость, чем впадины. Легко убедиться, что это должно быть так: под гребнями местная глубина больше, чем под впадинами. Но скорость волн может зависеть только от двух величин: глубины и ускорения силы тяжести. А из них можно построить только одну величину, имеющую размерность скорости: корень квадратный из глубины, умноженной на это ускорение. Ту же форму имеет выражение скорости падения тела с заданной высоты. Но если гребни бегут быстрее впадин, они должны выбегать вперед, так что волны сперва приобретают вертикальный участок переднего фронта, который затем наклоняется, как на рис. 46, в. Имея такую форму, волны бежать не могут и обрушиваются в виде прибоя.

Рис. 5а. Рис. 5б.

Проследим теперь, как будет изменяться профиль волны сжатия в газе. Прежде чем возникнет физически невозможное перехлестывание, в некоторой точке профиля должен образоваться очень маленький вертикальный участок (рис. 5а, б). В зависимости от закона движения поршня этот вертикальный участок может получиться как в передней точке волны сжатия, так и в ее середине. Давление с левой стороны от этого участка будет продолжать повышаться за счет сигналов, приходящих со стороны поршня. Но как бы оно ни повышалось, вертикальная касательная аб к профилю не наклонится вправо, чтобы не дать начало невозможному профилю, изображенному на рис. 46.