Смекни!
smekni.com

«Направленный взрыв.» (стр. 4 из 8)

Следовательно, единственный выход состоит в том, что из вертикальной касательной разовьется разрыв давления (рис. 6а, б).

Место разрыва можно рассматривать как участок кривой со сколь угодно большим наклоном, так что неоднозначности давления не возникает.

Мы начали рассуждения, предполагая, что все величины в волне сжатия изменяются непрерывно, так же, как и в волне разрежения. Но оказалось, что в волне сжатия неминуемо должен наступить такой момент, когда


движение больше не сможет остаться непрерывным. Однако, перемещением поршня в принципе можно располагать по произволу, так что газ должен найти какой-нибудь естественный выход. Единственное возможное предположение состоит в том, что в газе возникнет скачок.

Такого рода скачок называется ударной волной. К выводу о необходимости образования ударной волны из волны сжатия газовая динамика пришла не из качественных рассуждений, а из строгих уравнений. Но те, кто пришел к этому выводу впервые, сами в него не поверили, исходя из метафизического предрассудка, что «природа не делает скачков». Вероятно, в основе этого ложного принципа лежит допущение, что скачок — это нечто беззаконное, нарушающее естественный ход вещей. На самом деле, однако, ударная волна управляется такими же строгими закономерностями, как и гладкое, непрерывное течение газа. Она возникает, развивается и распространяется в таком же согласии с механикой и общими свойствами газа, как и звуковая волна.

§ 12 Действие ударных волн

Поражающее действие взрыва обязано ударным волнам. Если волна достаточно велика по размерам, как это бывает при ядерных взрывах, то при избыточном давлении всего 0,35 атмосферы рушатся здания. При нескольких сотых атмосферы вылетают оконные рамы. Не причиняют заметных повреждений только волны со скачком давления в несколько тысячных атмосферы.

Действие ударной волны на человека зависит от условий, в которых он находится относительно волны.

Во введении мы упоминали о летчике, которого поддержала ударная волна во время падения. Человек, летящий с большой высоты, достигает из-за сопротивления воздуха предельной скорости около 60 м/сек. Следовательно, такой должна была оказаться наименьшая встречная скорость воздуха в ударной волне. Этому соответствует давление менее пол-атмосферы, обычно не смертельное, согласно приведенной только что оценке. Стоящего на земле человека, возможно, убивает не сама волна, а причиняемый ею бросок. Скорость воздуха в волне с амплитудой давления в одну атмосферу равна 170 м/сек. Ясно, что если она сообщит человеку скорость порядка нескольких десятков м/сек, при ударе о землю он вряд ли выживет.

Для целей защиты от ударных волн очень важно уметь рассчитывать их силу заранее.

Сильные волны, возникающие на близких расстояниях от ядерных взрывов. Защититься от них можно, только уйдя очень глубоко под землю. Но их свойства очень важны для дальнейшего развития взрыва и потому интересны сами по себе, безотносительно к защите. Они накаляют воздух, давая начало обжигающему тепловому излучению. Дальше мы увидим, что ударная волна сказывается на распространении гамма-лучей и нейтронов, увеличивая их поражающее действие. Наконец, из сильных волн рождаются сравнительно слабые, которые уходят на большие расстояния. По разрушительному действию они при этом отнюдь не являются слабыми, как мы только что видели. Зато и защита от этих «слабых» волн не безнадежна.

Условимся называть волну сильной, когда давление и плотность энергии в ней гораздо больше, чем были в невозмущенном воздухе. Такова, например, волна с давлением сто атмосфер в воздухе.

§ 13 Свойства ударной волны

В сильной ударной волне имеет место как раз обратное: температура подскакивает во много раз на одном пробеге. Поэтому термин «теплопроводность» неточно отражает весьма сложный необратимый процесс, происходящий внутри скачка.

При переходе через фронт ударной волны меняются давление, температура, плотность вещества среды, а также скорость её движения относительно фронта ударной волны. Все эти величины изменяются не независимо, а связаны с одной-единственной характеристикой ударной волны, числом Маха.

Чем выше температура за фронтом, тем больше поток излучения с поверхности скачка и тем выше температура газа перед скачком.

Нагретый газ перед скачком не пропускает видимый свет, идущий из-за фронта У. в., экранируя фронт. Поэтому яркостная температура У. в. не всегда совпадает с истинной температурой за фронтом.

У. в. в реальных газах. В реальном газе при высоких температурах происходят возбуждение молекулярных колебаний, диссоциация молекул, химические реакции, ионизация и т.д., что связано с затратами энергии и изменением числа частиц. При этом внутренняя энергия e сложным образом зависит от р и r.

В скачке уплотнения нагреваются не только тяжёлые частицы, но и электроны, а обмен энергии между ионами и электронами происходит медленно вследствие большого различия их масс.

У. В. в твёрдых телах. Энергия и давление в твёрдых телах имеют двоякую природу: они связаны с тепловым движением и с взаимодействием частиц (тепловые и упругие составляющие). Теория между частичных сил не может дать общей зависимости упругих составляющих давления и энергии от плотности в широком диапазоне для разных веществ и, следовательно, теоретически нельзя построить функцию e(р /r). Поэтому ударные адиабаты для твёрдых (и жидких) тел определяются из опыта или полуэмпирически.

Глава 3 Детона́ция.

Детона́ция (нормальная) — сверхзвуковой стационарный комплекс, состоящий из ударной волны и экзотермической химической реакции за ней.

Принципиальная возможность явления детонации следует из того, что при прохождении через фронт всякой ударной волны вещество нагревается. Если ударная волна достаточно сильна, то это нагревание может поджечь горючую смесь, что и приводит к детонации. Возникающая при этом поверхность нормального разрыва называется детонационной волной.

§ 14 Скорость волны детонации

Чтобы выразить в определенных числах особенности процесса детонации, необходимо учесть, что распространение волны детонации зависит, во-первых, от того, в какой мере изменяется давление при расширении взрывных газов, и, во-вторых, от удельной энергии детонирующего взрывчатого вещества.

Изменение давления взрывных газов при изменении их объема выражается так называемым законом состояния. Этот закон в наиболее простой, хотя и несколько приближенной форме, был предложен в 1944 году советскими учеными Л.Д. Ландау и К.П. Станюковичем.

Величина к характеризует степень жесткости взрывных газов. Чем больше эта величина, тем сильнее сопротивляется газ сжатию, тем быстрее растет его давление при уменьшении объема. Для газов, сжимаемых сравнительно медленно при небольших давлениях, можно принять, что к = 1. Тогда давление оказывается обратно пропорциональным объему газа. Это не что иное, как общеизвестный закон Бойля—Мариотта. При очень быстром сжатии взрывных газов, имеющих высокое давление, их сопротивление уменьшению объема оказывается весьма значительным. В соответствии с этим величина к возрастает. Л.Д. Ландау и К.П. Станюкович, исходя из теоретических соображений, установили, что приближенно для всех химических взрывчатых веществ к = 3.

Это значит, что при изменении объема в 2 раза давление изменяется в 8 раз.

§ 15 Скорость расширения газов

Чтобы обеспечить сильное нагревание выделившихся при взрыве газов и создать в них высокое давление, необходимо, чтобы энергия выделилась либо в этих газах, либо была передана им до того, пока еще не произошло заметных потерь энергии и заметного увеличения их объема. Это значит, что процесс выделения или передачи энергии должен распространяться со скоростью, заметно превосходящей скорость расширения взрывных газов.

Обычно при взрыве начальная скорость расширения газов достигает около одного километра в секунду. Скорость распространения процесса взрыва, называемого детонацией, у взрывчатых веществ несколько больше и находится в пределах от двух до восьми километров в секунду.

При взрыве какого-либо взрывчатого вещества, например тротила, происходит его преобразование в раскаленные взрывные газы, имеющие высокое давление. При этом энергия выделяется первоначально в виде теплоты, заключенной в сильно сжатых газах.

§ 17 Гидродинамическая теория детонации

Это возможно потому, что определяющее значение при взрыве имеет волна детонации, распространяющаяся через заряд. Эта волна движется во взрывчатом веществе так, как если бы это вещество было сжимаемой жидкостью. Поэтому в основе теории взрыва всех взрывчатых веществ лежит гидродинамическая теория детонации.

Исходным условием гидродинамической теории детонации является то, что реакция взрывного разложения осуществляется в зоне, непосредственно примыкающей к фронту детонационной волны. Фронт детонационной волны представляет собой поверхность, отделяющую зону, где происходит реакция взрыва, от еще не захваченного взрывом взрывчатого вещества. Фронт волны детонации движется с очень большой скоростью в направлении, перпендикулярном к поверхности этого фронта. Непосредственно за фронтом волны температура и давление скачкообразно повышаются.