Смекни!
smekni.com

Тема введение в цифровую обработку сигналов всерьезных делах следует заботиться не столько о том, чтобы создавать благоприятные возможности, сколько о том, чтобы их не упускать (стр. 2 из 4)

где z = s+jv = r×exp(-jj) - произвольная комплексная переменная. Это преобразование позволяет в дискретной математике использовать всю мощь дифференциального и интегрального исчисления, алгебры и прочих хорошо развитых разделов аналитической математики.

Дискретные системы обычно описывается линейными разностными уравнениями с постоянными коэффициентами:

y(k) = ∑ b(n) x(k-n) - ∑ a(m) y(k-m), n=0, 1, … , N, m=1, 2, … , M.

Этим уравнением устанавливается, что выходной сигнал y(k) системы в определенный момент ki (например, в момент времени kiDt) зависит от значений входного сигнала x(k) в данный (ki) и предыдущие моменты (ki-n) и значений сигнала y(k) в предыдущие моменты (ki-m).

Z-преобразование этого уравнения, выраженное относительно передаточной функции системы

H(z) = Y(z)/X(z),

представляет собой рациональную функцию в виде отношения двух полиномов от z. Корни полинома в числителе называются нулями, а в знаменателе - полюсами функции H(z). Значения нулей и полюсов позволяют определить свойства линейной системы. Так, если все полюсы X(z) по модулю больше единицы, то система является устойчивой (не пойдет “вразнос” ни при каких входных воздействиях). Нули функции Y(z) обращают в ноль H(z) и показывают, какие колебания вовсе не будут восприниматься системой (“антирезонанс”). Систему называют минимально-фазовой, если все полюсы и нули передаточной функции лежат вне единичной окружности |z|=1 на комплексной z-плоскости. Попутно заметим, что применение z-преобразования с отрицательными степенями z-1 меняет положение полюсов и нулей относительно единичной окружности |z|=1 (область вне окружности перемещается внутрь окружности, и наоборот).

Природа сигналов. По своей природе сигналы могут быть случайными или детерминированными.

К детерминированным относят сигналы, значения которых в любой момент времени или в произвольной точке пространства (а равно и в зависимости от любых других аргументов) являются априорно известными или могут быть определены (вычислены) по известной или предполагаемой функции, даже если мы не знаем ее явного вида.

Случайные сигналы непредсказуемы по своим значениям во времени или в пространстве. Для каждого конкретного отсчета случайного сигнала можно знать только вероятность того, что он примет какое-либо значение в определенной области возможных значений. Закон распределения случайных значений далеко не всегда известен. Одним из самых распространенных является нормальное распределение, плотность которого имеет вид симметричного колокола. Для его описания достаточно двух первых моментов распределения случайных величин.

Наиболее простые характеристики законов распределения – среднее значение случайных величин (математическое ожидание) и дисперсия (математическое ожидание квадрата отклонения от среднего), характеризующая разброс значений случайных величин относительно среднего значения. Параметры динамики случайных сигналов во времени характеризуются функциями автокорреляции (количественная оценка взаимосвязи значений случайного сигнала на различных интервалах) или автоковариации (то же, при центрировании случайных сигналов). Аналогичной мерой взаимосвязи двух случайных процессов и степени их сходства по динамике развития является кросскорреляция или кроссковариация (взаимная корреляция или ковариация). Максимальное значение взаимной корреляции достигается при совпадении двух сигналов. При задержке одного из сигналов по отношению к другому положение максимума корреляционной функции дает возможность оценить величину этой задержки.

Функциональные преобразования сигналов. Одним из основных методов частотного анализа и обработки сигналов является преобразование Фурье. Различают понятия “преобразование Фурье” и “ряд Фурье”. Преобразование Фурье предполагает непрерывное распределение частот, ряд Фурье задается на дискретном наборе частот. Сигналы также могут быть заданы в наборе временных отсчетов или как непрерывная функция времени. Это дает четыре варианта преобразований – преобразование Фурье с непрерывным или с дискретным временем, и ряд Фурье с непрерывным временем или с дискретным временем. Наиболее практична с точки зрения цифровой обработки сигналов дискретизация и во временной, и в частотной области, но не следует забывать, что она является аппроксимацией непрерывного преобразования. Непрерывное преобразование Фурье позволяет точно представлять любые явления. Сигнал, представленный рядом Фурье, может быть только периодичен. Сигналы произвольной формы могут быть представлены рядом Фурье только приближенно, т.к. при этом предполагается периодическое повторение рассматриваемого интервала сигнала за пределами его задания. На стыках периодов при этом могут возникать разрывы и изломы сигнала, и возникать ошибки обработки, вызванные явлением Гиббса, для минимизации которых применяют определенные методы (весовые окна, продление интервалов задания сигналов, и т.п.).

При дискретизации и во временной, и в частотной области, обычно говорят о дискретном преобразовании Фурье (ДПФ):

S(n) =

s(k) exp(-j2p kn/N),

где N- количество отсчетов сигнала. Применяется оно для вычисления спектров мощности, оценивания передаточных функций и импульсных откликов, быстрого вычисления сверток при фильтрации, расчете корреляции, расчете преобразований Гильберта, и т.п. Расчет ДПФ по приведенной формуле требует вычисления n коэффициентов, каждый из которых зависит от k элементов исходного отрезка, так что число операций не может быть меньше nk. Существует целое семейство алгоритмов, известное, как “Быстрое Преобразование Фурье” - БПФ, сокращающее число операций для вычисления коэффициентов до n log(k). “Быстрое” не следует трактовать, как “упрощенное” или “неточное”. При точной арифметике результаты расчетов ДПФ и по алгоритмам БПФ совпадают.

Известное применение находят и варианты преобразования Фурье: косинусное для четных и синусное для нечетных сигналов, а также преобразование Хартли, где базисными функциями являются суммы синусов и косинусов, что позволяет повысить производительность вычислений и избавиться от комплексной арифметики. Вместо косинусных и синусных функций используются также меандровые функции Уолша, принимающие значения только +1 и -1. И, наконец, в последнее время в задачах спектрально-временнного анализа нестационарных сигналов, изучения нестационарностей и локальных особенностей сигналов "под микроскопом", очистки от шумов и сжатия сигналов начинают получать в качестве базисов разложения вейвлеты ("короткие волны"), локализованные как во временной, так и в частотной области.

Традиционные методы анализа данных предназначены, как правило, для линейных и стационарных сигналов и систем, и только в последние десятилетия начали активно развиваться методы анализа нелинейных, но стационарных и детерминированных систем, и линейных, но нестационарных данных­. Между тем, большинство естественных материальных процессов, реальных физических систем и соответствующих этим процессам и системам данных в той или иной мере являются нелинейными и нестационарными, и при анализе данных используются определенные упрощения, особенно в отношении априорно устанавливаемого базиса разложения данных.

Необходимое условие корректного представления нелинейных и нестационарных данных заключается в том, чтобы иметь возможность формирования адаптивного базиса, функционально зависимого от содержания самих данных. Такой подход реализуется в методе преобразования Гильберта-Хуанга, хотя на данный момент без соответствующих достаточно строгих математических обоснований /54/. Хорошие результаты применения метода для решения многих практических задач позволяют надеяться, что за разработкой строгой теории метода дело не станет.

1.2. КЛЮЧЕВЫЕ ОПЕРАЦИИ ЦИФРОВОЙ ОБРАБОТКИ [12, 43, 53].

Существуют многочисленные алгоритмы ЦОС как общего типа для сигналов в их классической временной форме (телекоммуникации, связь, телевидение и пр.), так и специализированные в самых различных отраслях науки и техники (геоинформатике, геологии и геофизике, медицине, биологии, военном деле, и пр.). Все эти алгоритмы, как правило – блочного типа, построенные на сколь угодно сложных комбинациях достаточно небольшого набора типовых цифровых операций, к основным из которых относятся свертка (конволюция), корреляция, фильтрация, функциональные преобразования, модуляция. Эти операции уже рассматривались в "Теории сигналов и систем". Ниже приводятся только ключевые позиции по этим операциям ("повторенье – мать ученья").

Линейная свертка – основная операция ЦОС, особенно в режиме реального времени. Для двух конечных причинных последовательностей h(n) и y(k) длиной соответственно N и K свертка определяется выражением:

s(k) = h(n) ③ y(k) º h(n) * y(k) =

h(n) y(k-n), (1.2.1)

где: ③ или * - символьные обозначения операции свертки. Как правило, в системах обработки одна из последовательностей y(k) представляет собой обрабатываемые данные (сигнал на входе системы), вторая h(n) – оператор (импульсный отклик) системы, а функция s(k) – выходной сигнал системы. В компьютерных системах с памятью для входных данных оператор h(n) может быть двусторонним от –N1 до +N2, например – симметричным h(-n) = h(n), с соответствующим изменением пределов суммирования в (1.2.1), что позволяет получать выходные данные без сдвига относительно входных. При строго корректной свертке с обработкой всех отсчетов входных данных размер выходного массива равен K+N1+N2-1, и должны задаваться начальные условия по отсчетам y(k) для значений y(0-n) до n=N2, и конечные для y(K+n) до n=N1. Пример выполнения свертки приведен на рис. 1.2.1.