Смекни!
smekni.com

О проблеме физических основ теоретической электротехники (стр. 1 из 2)

УДК 538.31:621.3

Бранспиз Ю.А.

О проблеме физических основ теоретической электротехники

Показано, что умаление роли физических основ в теоретической электротехнике как технической науке было до последнего времени объективным процессом. Показана также недостаточность для практического применения известных представлений об электромагнитных явлениях в конкретных электротехнических устройствах. Предлагается строить физические основы электротехники, применяя современные методы описания микроскопического магнитного поля.

Введение. Теоретическое осмысление электротехники появилось вместе с самой электротехникой еще в середине XIX века. Причем это осмысление сразу пошло по двум основным направлениям:

- осмысление физических основ электротехники (для максимально эффективного использования тех физических явлений электромагнетизма, которые полагались в основу функционального действия соответствующих электротехнических устройств);

- разработка практических методик расчета электротехнических устройств на основе расчетов электромагнитных явлений в них, удовлетворяющих определенным требованиям точности.

Ясно, что при этом характер и содержание первого направления изменялись с развитием физики электромагнетизма. Но всегда присутствовало стремление на понимание физической сути (сущности) того или иного используемого в конкретном электротехническом устройстве явления (проявления) электромагнетизма. В качестве примера можно привести объяснение физической сути электродинамического взаимодействия двух прямолинейных проводников с токами – ситуация, часто встречающаяся в электротехнике. Первое объяснение (старинное) основывается на использовании силовых линий поля вокруг проводников с током и их взаимном сложении или вычитании. Второе объяснение (современное) основывается на рассмотрении взаимодействия потоков электронов в проводниках (см., например, соответствующий материал в [1])

Это стремление к уяснению физической сути явлений декларируется и в современной теоретической электротехнике. Так, в Предисловии к последнему изданию известного учебника по теоретическим основам электротехники под редакцией академика Демирчяна К.С. указывается:«…. первоначальная ориентация курса на первичность понимания особенностей электромагнитных процессов в рассматриваемом конкретном устройстве над формально расчетными методами приобретает все более важное значение» [2].

В этой связи отметим, что, согласно приведенному тексту:

- с одной стороны, «первичность понимания» была первоначальной ориентацией и должна, следовательно, уже быть в теоретической электротехнике;

- с другой же стороны, эта «первичность» все еще должна приобретать, иначе говоря, доказывать, свое «важное значение», по сравнению с «формально расчетными методами».

То есть имеет место явное несоответствие, которое обусловлено тем, что декларируемая «первичность понимания» только и декларируется, а реальное положение дел заключается в приоритете второго пути в теоретическом осмыслении электротехники.

В самом деле, констатируя, что вначале была первоначальная ориентация на первичность понимания (на что указывается и в [2]), следует признать, что затем эта ориентация была потеряна. И это наглядно проявляется в том, что если ранее в курсах теоретических основ электротехники присутствовал значительный по объему раздел физических основ электротехники (см., например, [3, 4]), то в современных курсах теоретической электротехники (см., например, [1, 5]) ориентация на изложение именно физических основ электротехники, а не сводки законов физики электромагнетизма, утеряна.

Это может рассматриваться как проблема физических основ теоретической электротехники, которая обуславливает определенные трудности и в преподавании и в практическом применении результатов теоретической электротехники как технической науки. Уяснение некоторых особенностей этой проблемы и является целью данной работы.

1. Объективность проблемы (первый гносеологический аспект). Потеря ориентации на изложение именно физических основ электротехники в современных курсах основ теоретической электротехники произошла, конечно, не сразу.

Это косвенно признается и в [1], когда отмечается, что: «Развитие возможностей ЭВМ и их программного обеспечения в настоящее время и в перспективе таковы, что изучение расчетных методов для их освоения и развития перестает быть приоритетным». Значит, все-таки развитие именно расчетных методов было до этого приоритетным; значит, все-таки имеется необходимость приобретать (доказывать) значение первичности понимания (в указанном выше смысле).

При этом проблема, повторимся, заключается в том, что сами физические основы собственно изъяты из теоретических основ электротехники.

Так, в [1] оставлен лишь первый вводный раздел «Основные понятия и законы теории электромагнитного поля и теории электрических и магнитных цепей», много меньший других разделов. Здесь отметим характерное объединение теории электромагнитного поля и теории цепей. Характерное, потому что оно отражает общую тенденцию в теоретической электротехнике рассмотрения и исследования преимущественно электрических цепей (в последнее время – электронных цепей), к которым сводятся, например, даже задачи расчета электромагнитов (метод эквивалентных схем замещения). Эта тенденция проявляется, в частности, в том, что практически во всех курсах теоретической электротехники изложение теории линейных электрических цепей составляет наибольшую по объему часть. Именно эта тенденция и позволила утверждать профессору Нетушилу А.В. о том, что современная теоретическая электротехника находится в состоянии оцепенения [6].

Профессор Нетушил А.В. наряду с утверждением об оцепенении теоретической электротехники утверждал также и об обессиливании ее, имея в виду отсутствие в ней интереса к рассмотрению вопросов преобразования энергии в электротехнических устройствах и сопутствующих такому преобразованию силовых взаимодействий элементов этих устройств [6].

Но все дело в том, что указанные оцепенение и обессиливание теоретической электротехники не являются просто чьей-то «злой волей», а объективно обусловлены:

во-первых, характером развития теоретической электротехники как технической науки;

во-вторых, характером того знания о проявлениях электромагнитного поля, которое дает нам современная физика.

Что касается указанного «во-первых», то развитие теоретической электротехники именно как технической науки ставит перед ней одну из основных задач всех технических наук – создание полезных (практически применимых) моделей явлений в соответствующих технических устройствах [7, 8]. Поэтому в теоретической электротехнике достаточно давно возникли способы описания конкретных проводов и катушек с током, конкретных систем заряженных тел на основе использования таких понятий, как сопротивление, индуктивность, емкость, представляющие собой идеальные (теоретические) объекты с сосредоточенными параметрами, которые позволяют обобщенно (интегрально) описать реальные электромагнитные процессы в соответствующих объектах, являющиеся проявлениями электромагнитного поля. Практическое удобство применения этих понятий привело к разработке достаточно развитой теории цепей, которая и предлагается в настоящее время как основной инструмент рассмотрения различных электрических и магнитных явлений в различных электротехнических устройствах. При этом достаточным является простое знание о тех идеализациях реальных объектов, которые дали указанные понятия. Как следствие, на таком понимании теоретическая электротехника и оцепеневает (ясно, что в этом случае физические основы электротехники являются излишними).

Кроме того, если теоретическая электротехника и рассматривает какие-то электромагнитные процессы вне теории цепей, то это делается на основе системы уравнений электромагнитного поля (уравнения Максвелла), которые в этом случае могут рассматриваться как исходная система некоторых аксиом поля. Как следствие, любые построения теоретической электротехники являются в этом случае дедуктивными (из общего – уравнений Максвелла, ищутся частные решения этих уравнений). Такой дедуктивный характер теоретической электротехники не делает ее ближе к физике (к физическим основам ее), являющейся наукой преимущественно индуктивной [8].

Таким образом, указанное обессиливание и оцепенение теоретической электротехники является объективно обусловленным, приводя, как следствие, к возникновению и рассматриваемой проблемы. Такая объективная обусловленность рассматриваемой проблемы развитием теоретической электротехники как технической науки может быть названа гносеологическим аспектом объективности этой проблемы. Конечно, недостаточно просто указать на этот аспект. Требуется его подробный анализ, который требует соответствующих исследований. Здесь лишь отметим, что основу этих исследований может составить анализ теоретического знания, приведенный в [9].

Что же касается указанной выше объективной обусловленности обессиливания и оцепенения теоретической электротехники характером имеющихся современных физических знаний об электромагнитных явлениях, то несмотря на всю глубину и обширность этих знаний, их можно определить понятием «недостаточность для практического применения». Эта недостаточность также имеет определенный гносеологически аспект, который рассматривается далее более подробно.

В качестве же примеров такой недостаточности, чтобы не быть голословными, укажем на принцип действия двигателя постоянного тока и объяснения явления электромагнитной индукции. Современная физика по сути принципа действия двигателя постоянного тока дает следующее: рассматривается сила на проводник с током в магнитном поле в ситуации (см., например, [10]), которая практически в двигателях не встречается, поскольку в реальных двигателях проводники с током размещаются в пазах, в которых индукция магнитного поля равна нулю. Что же касается явления электромагнитной индукции, то современная физика, указывая на универсальный характер этого явления (проявляется в форме записи соответствующего закона, не зависящего от способа изменения магнитного потока), объясняет его лишь через силу Лоренца на электроны проводимости в проводниках контура, что не объясняет возникновение ЭДС индукции, когда, например, поток через контур изменяется в некоторой локальной зоне, которая не содержит проводников контура.