2. СИСТЕМА ЭЛЕКТРОБЕЗОПАСНОСТИ
2.1. ОБЩИЕ ПОЛОЖЕНИЯ
Все более широкое использование электроэнергии во всех областях деятельности человека, неуклонный рост энерговооруженности труда, резкое увеличение количества электроприборов в быту и на производстве, естественным образом повлекли за собой повышение опасности поражения человека электрическим током.
Электрический ток не имеет каких-либо физических признаков или свойств, по которым человек мог бы его ощущать органами чувств, что усугубляет его опасность для человека.
Электротравматизм составляет значительную долю в общем числе несчастных случаев. Специалистам-электрикам и рядовым пользователям известно большое количество случаев гибели или тяжелого поражения людей от удара электрическим током или возгораний и пожаров, вызванных неисправностями электрооборудования и электропроводок.
2.2. КРИТЕРИИ ЭЛЕКТРОБЕЗОПАСНОСТИ
С самого начала промышленного применения электричества ученые всего мира занимались изучением воздействия электрического тока на человека и последствий этого воздействия. Широкую известность получили работы следующих авторов: H.H. Egyptien, L.P. Ferris, D.G. King, H.B. Williams, W.B. Kouwenhoven, C.F. Dalziel, S. Koeppen, G. Irresberger, H. Hofherr, J.T. Harley, G. Biegelmeier, E. Reindl, Smola, B.J. Simpson, J. Jacobsen, М. Охаси, Т. Кавасэ, В.Е. Манойлова, С.К. Киселева, А.И. Сидорова, Ю.В. Ситчихина, Б.А. Князевского, В.И. Щуцкого и многих др.
В 1950-х годах было однозначно установлено, что при воздействии электрического тока на человека, наиболее уязвимым органом является его сердце. Фибрилляция (беспорядочные сокращения мышц) сердца может возникать даже при малых значениях тока. Отпали версии об асфиксии, параличе мышц, поражении мозга как причинах летального исхода при электропоражении.
Также было установлено, что результат воздействия электрического тока на организм человека зависит не только от значения тока, но и от продолжительности его протекания, пути тока через тело человека, а также, в меньшей степени от частоты тока, формы кривой, коэффициента пульсаций и других факторов.
Электрическое сопротивление тела человека зависит от влажности кожи, размера поверхности контакта, пути протекания тока по телу, индивидуальных особенностей организма и других факторов. Известно, что сопротивление внутренних органов человека не превышает 500-600 Ом. Сопротивление кожи во влажном состоянии крайне мало - 10-20 Ом. При определении условий электробезопасности в электроустановке за расчетное принято сопротивление тела человека 800-1000 Ом.
По причине неопределенности реального значения сопротивления тела человека для расчетной оценки опасности электропоражения в электроустановке принято использовать в качестве критерия опасности ток через тело человека, а не напряжение, приложенное к нему.
В качестве иллюстрации к вышеизложенному далее приведены некоторые результаты научных исследований воздействия электрического тока на человека.
Известный американский ученый Charles F. Dalziel в 1950-60-е гг. провел на большой группе добровольцев фундаментальные исследования по определению электрических параметров тела человека и физиологического воздействия электрического тока на человека. Результаты его исследований считаются классическими и не потеряли своего значения до настоящего времени. На рис. 2.1 приведены полученные экспериментально и обработанные методами математической статистики, зависимости "отпускающего" (Let-go) тока от индивидуальных качеств человека (А - экспериментальные данные для группы из 28 испытуемых женщин, Б - для группы из 134 мужчин). На рис. 2.2 графически представлена область предельно допустимых значений тока и длительности его протекания через человека, с вероятностью 99,5 % не вызывающих фибрилляцию сердца (А - область недопустимых значений).
По Дальцилу граница областей допустимых и недопустимых значений тока через человека и длительности его протекания определяется выражением:
I = 165 / ÖT ,
где I - предельно допустимый ток через человека, мА; T - длительность протекания тока через тело человека, с.
Определенные ГОСТ 12.1.038-82 предельно допустимые значения тока через тело человека достаточно точно соответствуют этому выражению.
Таблица 2.1
t, с | 0,01-0,08 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,0 | св. 1,0 |
I, мА | 650 | 400 | 190 | 160 | 140 | 125 | 105 | 90 | 75 | 65 | 50 | 6 |
Таблица 2.2
t, с | 0,01-0,08 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,0 | св. 1,0 |
I, мА | 220 | 200 | 100 | 70 | 55 | 50 | 40 | 35 | 30 | 27 | 25 | 2 |
В ГОСТ 12.1.038-82 (с изменениями от 01.07.88) "Электробезопасность. Предельно допустимые уровни напряжений прикосновения и токов" определены предельно допустимые значения переменного тока частотой 50 Гц через тело человека в производственных (табл. 2.1) и бытовых (табл. 2.2) электроустановках в зависимости от времени воздействия.
2.3. ОСНОВНЫЕ ПРИНЦИПЫ ЗАЩИТЫ ОТ ЭЛЕКТРОПОРАЖЕНИЯ
Все существующие защитные меры по принципу их выполнения можно разделить на три основные группы:
- Обеспечение недоступности для человека токоведущих частей электрооборудования.
- Снижение возможного значения тока через тело человека до безопасного значения.
- Ограничение времени воздействия электрического тока на организм человека.
Поражение человека происходит при совпадении двух факторов Р(А) и Р(В), где: Р(А) - вероятность того, что при прикосновении к электроустановке человек попадет под электрическое напряжение; Р(В) - вероятность того, что количество электричества (т.е. ток и длительность его протекания), проходящее через тело человека, превысит допустимое значение.
Фактор Р(В) зависит от фактора Р(А), поэтому вероятность поражения электрическим током Рh определяется выражением:
Рh = Р(В/А) Р(А);
Р(А), в свою очередь, можно определить как:
Р(А) = Р(С) Р(D),
где Р(С) - вероятность прикосновения человека к проводящим частям электроустановки; P(D) - вероятность появления на проводящих частях электроустановки напряжения.
Таким образом, вероятность поражения определяется выражением:
Рh = Р (С) Р(D) Р(В/А).
Защитные меры, в зависимости от того, на какой из трех сомножителей выражения, определяющего вероятность поражения Рh, они влияют (уменьшают), делятся на следующие:
- Организационные меры защиты (для квалифицированного персонала), определяющие P(C):
- Назначение лиц, ответственных за безопасное проведение работ.
- Оформление работ нарядом-допуском, распоряжением или перечнем работ, выполняемых в порядке текущей эксплуатации.
- Выдача разрешения на подготовку рабочих мест и на допуск.
- Подготовка рабочих мест и допуск.
- Надзор во время работы.
- Оформление переводов на новое рабочее место.
- Оформление перерывов и окончания работ.
- Организационно-технические меры, определяющие Р(D):
Изоляция и ограждение токоведущих частей электрооборудования, применение блокировок, безопасных режимов работы сети, защитных средств, предупредительных плакатов, сигнализации, защитной изоляции, изолирования рабочего места, переносных заземлителей и др.
Технические меры защиты, определяющие Р(В/А):
- Применение низких напряжений.
- Защитное разделение сетей.
- Контроль, профилактика изоляции, обнаружение ее повреждений, защита от замыканий на землю.
- Компенсация емкостных токов утечки.
- Защитное заземление.
- Защитное зануление.
- Защитное отключение.
- Система уравнивания потенциалов.
- Двойная изоляция, изолирование рабочего места.
- Защита от перехода напряжения с высшей стороны на низшую.
- Грозозащита.
Каждая из перечисленных технических мер защиты требует специального рассмотрения. В данных Рекомендациях в первую очередь рассматривается защитное отключение, как одно из наиболее эффективных электрозащитных средств.
Современная система электробезопасности должна обеспечивать защиту человека от поражения в двух наиболее вероятных и опасных случаях: