Смекни!
smekni.com

Курс лекций «Основы экологии и охрана воздушного бассейна» Содержание (стр. 14 из 20)

Значения ВСВ, так же как и ПДВ, устанавливаются для источников и для предприятия в целом. Если зона влияния источника (вне зависимости от соотношения между концентрациями в точке его расположения и ПДК) захватывает участки местности, где концентрации больше ПДК, то на соответствующем этапе снижения выбросов должно устанавливаться значение ВСВ. Для вновь проектируемых предприятий (объектов) значения ВСВ не устанавливаются.

5.2 Документы, организующие процесс разработки ПДВ.

- ГОСТ 17.23.02-78 "Охрана атмосферы"

- Инструкция по инвентаризации выбросов загрязняющих веществ в атмосферу / Ленинград ЛДНТП 1991.

- Инструкция о порядке рассмотрения ,согласования и экспертизы воздухоохранных мероприятий и выдачи разрешений на выброс загрязняющих веществ в атмосферу по проектным решениям ОНД 1-84 /Москва Гидрометеоиздат 1984.

- Инструкция по нормированию выбросов (сбросов) загрязняющих веществ в атмосферу и в водные объекты /Москва 1989.

- Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий ОНД-86/Ленинград Госкомгидромет 1987.

- Рекомендации по оформлению и содержанию проекта нормативов предельно допустимых выбросов в атмосферу (ПДВ) для предприятия /Москва 1989.

- Методические указания по расчету валовых выбросов вредных веществ в атмосферу для предприятий нефтепереработки и нефтехимии

- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом) /Москва 1992.

5.3 Определение границ санитарно-защитной зоны

Применительно к ТЭС понятие санитарно-защитной зоны (СЗЗ) распространяется только на вредные вещества, уносимые с топливного склада, загазованных цехов и золоотвалов. К вредным веществам, уходящим с газами через дымовые трубы, понятии СЗЗ не применимо.

Размеры СЗЗ l0 (м), установленные в Санитарных нормах проектирования промышленных предприятий, должны проверяться расчетом загрязнения атмосферы в соответствии с требованиями ОНД с учетом перспективы развития предприятий и фактического загрязнения атмосферного воздуха.

Полученные по расчету размеры ССЗ должны уточняться отдельно для различных направлений ветра в зависимости от результатов расчета загрязнения атмосферы и среднегодовой розы ветров района расположения предприятия по формуле:

L=L0P/P0

Где L (м) – расчетный размер СЗЗ; L0 – расчетный размер участка местности в данном направлении, где концентрация вредных веществ (с учетом фоновой концентрации от других источников) превышает ПДК; Р (%) – среднегодовая повторяемость направления ветров рассматриваемого румба; Р0 (%) – повторяемость направлений ветров одного румба при круговой розе ветров.

Например, при восьмирумбовой розе ветров Р=100/8=12,5%. Значения l и L отсчитываются от границы источников.

Если в соответствии с предусмотренными техническими решениями и расчетами загрязнения атмосферы значения СЗЗ для предприятия получаются больше, чем значения, установленные Санитарными нормами проектирования промышленных предприятий, то необходимо пересмотреть проектные решения и обеспечить выполнение требований Санитарных норм за счет уменьшения количества выбросов вредных веществ в атмосферу, увеличения высоты их выброса с учетом установленных ограничений и др.

7.2 Технологические мероприятия по снижению оксидов азота.

Снижение выхода 1@Ож достигается обычно уменьшением Ггоах. Известно, что в температурном поле топочной среды в горизонтальном сечении на уровне размещения горелок максимальный уровень температур соответствует центральной части топки, а в периферийных зонах температура снижается вследствие интенсивной теплоотдачи от продуктов сгорания к поверхностям нагрева, размещенным на стенах топки.

Зависимость выхода «термических» оксидов азота от температуры имеет экспоненциальный характер [106] и поэтому любая неравномерность температур пци одинаковом тепловыделении в топке определяет повышенный выход оксидов азота. Это объясняется тем, что превышение температуры по сравнению со средним уровнем дает больший прирост оксидов азота, чем снижение их выхода в зонах с температурой ниже среднего уровня. Отсюда вытекает необходимость выравнивания температурного поля в топке.

Такое выравнивание или приближение к нему может осуществляться соответствующим распределением газов рециркуляции по ширине топки или по горелкам горизонтального ряда. Не изменяя общего расхода рециркуляционных газов, большую их часть следует подавать в более высокотемпературные зоны, в частности в центральную часть топки через центральные горелки, и меньшую - в крайние, размещенные ближе к стенам топки.

Институтом газа АН УССР (А. Н. Дубоший) на энергоблоках 200 и 300 МВт исследовалась интенсификация рециркуляции дымовых газов и двухстадийного горения путем повышения воздействия этих методов на центральные зоны топочной камеры [2301. Зависимость концентрации 1@Озс в продуктах сгорания котла ТГМП-314А при сжигании мазута при различных соотношениях расходов газов рециркуляции в центральные и крайние горелки показана на рис. 5-24. Топка котла ТГМП-314А оборудована 16 горелками, размещенными на фронтальной и задней стенах в 2 яруса. При равномерной раздаче газов рециркуляции по всем 16 горелкам (Окр/Оц=1, где Окр и Он - расход газов рециркуляции соответственно в крайние и центральные горелки) и общей степени рециркуляции г=15"/о выход оксидов азота составил 520 мг/мЗ. Не изменяя общего расхода газов рециркуляции, увеличивали их подачу на центральные 8 горелок, соответственно снижая расход на крайние. При соотношении расхода газов рециркуляции Скр/Оц=0,2 выход оксидов снижался до 380 мг/м@, т. е. на 27%, а температура пара промышленного перегрева оставалась в допустимом диапазоне (Гпер=555-560 "С). При дальнейшем увеличении расхода газов рециркуляции на центральные горелки

217

Них, е/мЗ

Рис. 5-24. Концентрация МОи в продуктах сгорания при неравномерной подаче газов рециркуляции в центральные и крайние горелки.

0,8 0,6 0,4 0,2 икр/Си,

ТАБЛИЦА 5-9 Обозначение горелок по их расположению в топке

Скр/Сц<(),2 выход оксидов азота не уменьшался и, кроме того, в результате значительного охлаждения центральной части топочной камеры в дымовых газал появились продукты неполного сгорания.

Усредненный выход оксидов азота при неравномерной по горелкам подаче газов рециркуляции можно оценить с помощью следующего выражения с эмпирическими коэффициентами:

@Ю?' == МО@ [_п@ (@-&@) + лпр (@пр @@/пр) + +«,@р(М«р-@@р)1/2я, (5-9)

где @Од - выход оксидов азота без подачи газов рециркуляции в топку, г=0, мг/м@; «ц, дар, икр-число соответственно центральных, промежуточных и крайних горелок, 2д==лц+/21,р+дкр1 Ни,

1дпр, [икр - условная относительная интенсивность образования оксидов азота в зоне действия соответственно центральных, промежуточных и крайних горелок; кг'@, Кт@, @(т@ - эффективность снижения выхода оксида азота при подаче газов рециркуляции соответственно в центральные, промежуточные и крайние горелки; Гц, /пр. гкр - коэффициент рециркуляции соответственно в центральных, промежуточных и крайних горелках.

Исходя из опыта исследования выхода оксидов азота в зоне действия различных по расположению в топке горелок, принимается:

1,5-2,0; (апр@О; @?=0,04; @'@@025;

цкр==0,5; @?Р=0,010.

Обозначение горелок в зависимости от числа их в горизонтальном ряду приведено в табл. 5-9.

Пример. В горизонтальном ряду 6 горелок: при @О 1ТО,:"Р=МО.д; при г«=0,2 и равномерном распределении газов рециркуляции по горелкам

НО@ = МО, [2 (1,5 - 0.04.20) + 2 (1 - 0,025.20) + Ч (0,5 - 0,01.201/6 =

= 0,50 @Юл,

218

при гобщ=0,2 и неравномерное распределении газов рециркуляции по горелкам гц=0,35, ?пр=0,25, гкр=0,

ту == НО@ [2 (1,5 - 0,04.35) + 2 (1 - 0,025.25) + 2 (0,5- 0,0101/6 ==

=0,3251@0@.

Снижение выхода Мод за счет неравномерного распределения газов рециркуляции по горелкам

Л КО@ == [(0,5 - 0,325)/0,51. 100 = 25,0 %.

На котлах ТГ-104 энергоблоков 200 МВт при сжигании попутного нефтяного газа проведено исследование эффективности двух- стадийного сжигания топлива в зависимости от места его реализации по ширине топочной камеры. Топка котла оснащена 12 горелками, размещенными в два яруса по шесть горелок в каждом. Двухстадийность сжигания топлива осуществлялась подачей 10 о/о общего расхода воздуха через центральный канал горелки. Закрытием шибера центрального канала воздуха производился перевод горелки на одностадийное сжигание.

Сравнивался выход оксидов азота в пяти режимах работы горелок котла:

1-все горелки работают по одностадийному принципу сжигания топлива;

11-4 крайние горелки - по двухстадийному, остальные - по одностадийному;

III - 4 центральные - по двухстадийному, остальные - по од- ностадийному;

1У-8 центральных и промежуточных горелок - по двухста- дийному, остальные - по одностадийному; @-все горелки работают по двухстадийному принципу. Результаты исследования приведены в табл. 5-10. Анализируя данные, приведенные в таблице, можно отметить, что эффективность двухстадийного сжигания топлива по снижению выхода сйксидов азота на центральных горелках выше, чем на крайних,

219

ТАБЛИЦА 5-10

Выход оксидов азота в режимах с различным размещением горелок двухстадийного сжигания топлива, мг/м®

в 2 раза (режимы 11 и III при а=1,05). Наибольшая эффективность соответствует работе всех горелок по двухстадийному принципу, однако при этом может повыситься температура перегрева пара и появиться химическая неполнота сгорания топлива. В связи с этим переоборудование горелок на двухстадийный принцип сжигания топлива целесообразно начинать с центральных горелок, затем можно вводить двухстадийность последовательно на промежуточных и крайних горелках до появления продуктов неполного сгорания топлива или превышения допустимого значения температуры перегрева пара.