Смекни!
smekni.com

Актуализированная редакция (стр. 5 из 10)

Rswt = Rsw·γst (5.10)

5.28. При воздействии температуры основными деформационными характеристиками арматуры являются значения относительных деформаций удлинения арматуры εs0 при достижении напряжениями расчетного сопротивления Rst и модуля упругости арматуры Еst и коэффициента линейного температурного расширения арматуры αst. Значения относительных деформаций арматуры εs0 определяют как упругие при значении сопротивления арматуры Rst.

εs0 =

(5.11)

Значения модуля упругости арматуры Еs принимают одинаковыми при растяжении и сжатии.

5.29. Влияние температуры на изменения модуля упругости арматуры учитывают умножением модуля упругости арматуры Еs на коэффициент βs

Еst = Еs βs (5.12)

Значения коэффициента βs принимают в зависимости от температуры в центре тяжести растянутой арматуры и сжатой арматуры.

5.30. В качестве расчетной диаграммы состояния (деформирования) арматуры, устанавливающей связь между напряжениями σst и относительными деформациями εs арматуры, принимают двухлинейную диаграмму, которую используют при расчете железобетонных элементов по деформационной модели. Диаграммы состояния арматуры при растяжении и сжатии принимают одинаковыми.

5.31. С повышением температуры коэффициент температурного расширения арматуры αst увеличивается, и значения его принимают в зависимости от класса и марки арматуры и температуры ее нагрева.

6. Расчет элементов бетонных и железобетонных конструкций на воздействие температуры.

Расчет температуры в бетоне железобетонных конструкций

6.1. Расчет распределения температуры в железобетонных конструкциях производят для установившегося теплового потока методом расчета температуры ограждающих конструкций. Температуру арматуры в сечениях железобетонных конструкций принимают равной температуре бетона в месте ее расположения.

6.2. Для конструкций, находящихся на открытом воздухе, коэффициент теплоотдачи наружной поверхности αе, Вт/(м2·ºС) определяют в зависимости от преобладающей скорости ветра зимой и летом.

При определении наибольших усилий в конструкции от воздействия температуры, а также при определении максимальной температуры нагрева бетона и арматуры исходят из максимальной средней скорости ветра (румбы) за июль или январь, повторяемость которой составляет 16% и более, согласно СНиП 23.01, но не менее 1 м/с.

6.3. Температуру бетона в сечениях конструкций при его нагреве в процессе эксплуатации определяют теплотехническим расчетом установившегося потока тепла при заданной по проекту расчетной температуре рабочего пространства или воздуха производственного помещения. Для конструкций, находящихся на открытом воздухе, наименьшие и наибольшие температуры бетона и арматуры определяют соответственно при минимальной зимней и максимальной летней температуре наружного воздуха района строительства.

6.4. Теплотехнический расчет статически неопределимых конструкций, работающих в условиях воздействия температур, производят на расчетную температуру, вызывающую наибольшие усилия. При расчете наибольших усилий от воздействия температур в конструкциях, находящихся на открытом воздухе, температуру бетона вычисляют соответственно по расчетной летней или зимней температуре наружного воздуха.

6.5. Коэффициент теплопроводности бетона λ (Вт/м·ºС) в сухом состоянии принимают в зависимости от средней температуры бетона в сечении элемента.

Для конструкций, находящихся в помещении или на воздухе, но защищенных от воздействия ветра, коэффициент теплоотдачи наружной поверхности αе принимают в зависимости от температуры наружной поверхности и воздуха.

6.6. Коэффициент теплоотдачи внутренней поверхности конструкции αi находят методом расчета теплопередачи как для случая сложного теплообмена и при определении распределения температуры бетона по сечению элемента допускают его принимать в зависимости от температуры воздуха производственного помещения или рабочего пространства теплового агрегата.

При расчете распределения температуры по толщине конструкции необходимо учитывать различие площадей теплоотдающей внутренней и наружной поверхностей:

при круговом очертании, если толщина стенки более 0,1 наружного диаметра;

при квадратном или прямоугольном очертании, если толщина стенки более 0,1 длины большей стороны;

при произвольном очертании, если разница в площадях теплоотдающих внутренней и наружной поверхностей более 10 %.

6.7. Вычисленные температуры не должны превышать предельнодопустимые температуры бетона по ГОСТ 20910-90.

6.8. В ребристых конструкциях, когда наружные поверхности бетонных ребер и тепловой изоляции совпадают, расчет температуры в бетоне производят по сечению ребра. Если бетонные ребра выступают за наружную поверхность тепловой изоляции, расчет температуры в бетоне ребра выполняют по методам расчета температурных полей или по соответствующим нормативным документам.

6.9. Расчет распределения температур в стенках боровов и каналов, расположенных под землей, допускается производить:

для кратковременного нагрева, принимая сечение по высоте стен неравномерно нагретым с прямолинейным распределением температур бетона.

Для длительного нагрева, принимают сечение по высоте стен равномерно нагретым.

6.10. Коэффициент теплопроводности λ огнеупорных и теплоизоляционных материалов принимают в зависимости от средней температуры материала.

Расчет деформаций от воздействия температуры

6.11. Расчет деформаций, вызванных нагреванием и охлаждением бетонных и железобетонных элементов, должен производиться в зависимости от наличия трещин в растянутой зоне бетона и распределения температуры бетона по высоте сечения элемента.

6.12. При расчете элементов, подвергающихся нагреву, положение центра тяжести всего сечения бетона или его сжатой зоны, а также статический момент и момент инерции всего сечения следует определять, приводя все сечение к ненагретому, более прочному бетону.

6.13. Для элемента, выполненного из одного вида бетона, если температура бетона наиболее нагретой грани не превышает 400ºС, сечение не разбивают на части.

6.14. Когда температура бетона наиболее нагретой грани сечения превышает 400ºС в прямоугольном сечении элемента, выполненном из одного вида бетона, сечение по высоте разбивают на две части, линия раздела должна проходить по бетону, имеющему температуру 400ºС. В двутавровых и тавровых сечениях элементов, выполненных из одного вида бетона, линия раздела должна проходить по границе между ребром и полкой. В элементе, сечение которого по высоте состоит из различных видов бетона, линия раздела должна проходить по границе бетонов.

6.15. Для элемента, сечение которого по высоте состоит из трех видов бетона или двутаврового сечения, выполненного из одного вида бетона, если температура бетона наиболее нагретой грани превышает 400 ºС, сечение разбивают на три части.

6.16. Во всех случаях расчета арматуру рассматривают как самостоятельную часть сечения.

Площадь нагретой растянутой и сжатой арматуры приводят к ненагретому, более прочному бетону.

6.17. Предельно допустимые деформации от воздействия температуры в элементах конструкций, в которых требуется их ограничение при нагревании и охлаждении, должны устанавливаться нормативными документами по проектированию соответствующих конструкций, а при их отсутствии должны указываться в задании на проектирование.

Расчет усилий от воздействия температуры

6.18. Расчет статически неопределимых железобетонных конструкций на воздействие температуры, производят одним из методов строительной механики, путем последовательных приближений с принятием действительной жесткости сечений.

6.19. Если исключить возможность хрупкого разрушения, то согласно теории прочности за предельное состояние конструкции принимают такое, когда при постоянном усилии значительно увеличиваются деформации. Такое состояние конструкции характеризуется образованием пластических шарниров с превращением статической системы в механизм. При воздействии только температурных усилий предельным состоянием конструкции является образование пластических шарниров с переходом системы в статически определимую. С образованием пластических шарниров снижаются температурные усилия, но разрушения конструкции не происходит.

6.20. Для конструкций, за предельное состояние которых принимают образование одного или такого количества пластических шарниров, когда система превращается в статически определимую конструкцию, расчет по несущей способности ведут на совместное действие усилий от температуры и нагрузки. Для конструкций, за предельное состояние которых принимают образование последнего пластического шарнира, когда система превращается в механизм, расчет по несущей способности ведут методом предельного равновесия на действие усилий от нагрузки без учета температурных усилий.

6.21. Для большей части железобетонных элементов при воздействии температуры можно допустить определение жесткости для наиболее напряженного сечения от совместного воздействия температуры и нагрузки и принимать ее постоянной по длине однозначной эпюры моментов. Для более точного определения усилий в предварительно напряженных элементах, а также в сжатых или изгибаемых слабо армированных элементах с ненапрягаемой арматурой, у которых участки без трещин занимают значительную длину пролета, жесткость определяют с учетом распределения трещин по длине совместного воздействия нагрузки и температуры.