Смекни!
smekni.com

Предупреждение. Спасение. Помощь. Материалы (стр. 13 из 49)

Учебный материал семестра (аудиторных занятий – 102 часа, СМР – 68 часов) разбит на 4 модуля по тематическому принципу:

1. Ряды Фурье – 10 часов.

2. Интегральное исчисление функций нескольких переменных – 30 часов.

3. Векторный анализ и уравнения математической физики – 30 часов.

4. Специальные главы высшей математики – 32 часа.

В зависимости от тематики и видов учебных занятий в модуле, предусмотрены различные виды текущего контроля достигнутых курсантами уровней знаний и умений. Это могут быть контрольные и лабораторные работы, выполнение индивидуальных контрольных заданий, самостоятельная работа курсанта с автоматизированным учебным курсом, компьютерное тестирование. На любом практическом занятии преподаватель в обязательном порядке оценивает работу каждого курсанта, и одним из обязательных видов текущего контроля в модуле является средняя оценка (СОЦ), вычисляемая по текущим оценкам. Завершает учебный процесс по каждому модулю рубежный контроль, который обычно проводится либо в виде контрольной работы (КР), либо в виде компьютерного тестирования (КТ).

Согласно разработанной на кафедре методике любому виду контроля соответствуют Rmax и Rmin – максимальное и минимальное количество баллов, которые могут быть начислены курсанту при прохождении данной контрольной точки. Далее приведён фрагмент положения о проведении текущего контроля успеваемости и промежуточной аттестации курсантов (балльно-рейтинговой системе оценивания результатов модульного обучения):

СЕМЕСТР 3, МОДУЛЬ 3 ( Rmax = 25, Rmin = 15 )

Векторный анализ и уравнения математической физики

(Темы 46 – 50)

Тема 46. Скалярное поле.

Тема 47. Векторное поле.

Тема 48. Простейшие векторные поля.

Тема 49. Уравнения математической физики.

Тема 50. Методы решения уравнений математической физики.

Количество учебных часов по программе – 32, СМР 18 часов.

Часы по видам занятий: Л – 14, ПЗ – 12, ЛР – 2, КР – 2.

Текущий контроль Рубежный контроль
СОЦ ЛР КР КТ
Rmax 5 5 5 10
Rmin 3 3 3 6

Максимальная сумма баллов, которую курсант может набрать за семестр по дисциплине, равна 100, при этом на текущий и рубежный контроль по всем модулям семестра отводится 80 баллов, а на промежуточную аттестацию (экзамен) – 20. Минимальная (пороговая) сумма баллов, которая позволяет зачесть курсанту освоение учебного материала семестра на удовлетворительном уровне, составляет 60 баллов, при этом на текущий и рубежный контроль отводится 48 баллов, а 12 баллов ему необходимо набрать в сессию.

ФИО

ИКЗ

КТ (Р)

Модуль 1

СОЦ

КТ

КР (Р)

Модуль 2

СУММА

ЛР

КР

СОЦ

КТ (Р)

Модуль 3

Петров 3,6 4,6 8,2 3,56 4,45 6 14 22,2 5 3,5 3,93 9 21,4

Все виды контроля оцениваются в баллах, которые вычисляются по шкале пересчёта оценки в баллы согласно заданному для данной контрольной точки значению Rmax. В результате итоги обучения за семестр, к началу экзаменационной сессии выглядят следующим образом:

После этого подсчитывается сумма баллов за первые три модуля, и так далее. В итоге курсант Петров имеет, например, к экзамену накопленную сумму баллов за семестр, равную 63. Экзамен начинается с компьютерного тестирования, максимальная «стоимость» которого 12 баллов. Экзаменационный тест содержит 36-42 вопроса, с помощью которых легко определяется уровень притязаний курсанта. Максимальную оценку (20 баллов) за экзамен он может получить, ответив дополнительно на 2 вопроса экзаменационного билета (каждый вопрос оценивается в 3 балла) и решив практическую задачу.

Практика показала, что модульное обучение в рамках БРС имеет свои достоинства и недостатки.

Бесспорным достоинством является то, что основная масса обучаемых работает в течение семестра более сознательно и интенсивно, текущие задолженности практически отсутствуют.

Однако во время экзаменационной сессии наблюдается спад активности и интереса, курсанты предпочитают не напрягаться и довольствуются малым. В результате общая успеваемость повышается, но количество отлично успевающих курсантов становится меньше.

и.М. Вертячих, канд. .техн. наук, доц., В.И. Жукалов, адъюнкт

УО «Гомельский инженерный институт МЧС Республики Беларусь», г. Гомель

СПОСОБЫ УВЕЛИЧЕНИЯ СОРБЦИИ НЕФТИ И НЕФТЕПРОДУКТОВ

ПОЛИМЕРНЫМИ ВОЛОКНИСТЫМИ MELT-BLOWN МАТЕРИАЛАМИ

Анализ научно-технических литературных источников показывает, что в настоящее время в качестве адсорбентов нефти все более широкое применение находят синтетические нетканые волокнистые материалы.

Согласно литературным источникам, синтетические адсорбенты обладают высокой грязеёмкостью – от 30 до 60 кг нефти/кг, хорошей флотируемостью, гидрофобностью и регенерацией. Однако все эти показатели получают в лабораторных условиях. Использование же в реальных условиях показывает, что их сорбционная способность оказывается, как правило, в 10...15 раз ниже по сравнению с экспериментально установленной [1].

Многократное использование сорбентов возможно только при сборе чистых фракций нефти. Чаще всего уже после двух-трех циклов регенерации емкость сорбента значительно снижается, так как его поры забиваются грязью и тяжелыми фракциями, структура сорбента деформируется.

Причиной ухудшения сорбции также может послужить изменение физико-химических свойств разлитой нефти в результате ее испарения, окисления, эмульгирования и других процессов. Повышенное содержание в нефти газа, легких фракций и эмульгированной воды приводит к увеличению расхода сорбента для ее удаления с поверхности воды [2]. Стоимость импортных сорбентов высока (15 – 30 $/кг), что иногда несопоставимо с эффективностью их применения.

В настоящее время в качестве адсорбентов нефти и нефтепродуктов все более широкое применение находят синтетические волокнистые материалы, полученные простым и одностадийным методом распыления расплава полимера газовым потоком (melt-blown) [3]. В качестве сырья используют гранулированные полиэтилен, полипропилен, стоимость которых не превышает 1,5-2 $/кг, а так же отходы термопластов.

Основными параметрами полимерных волокнистых материалов (далее – ПВМ), определяющими их сорбционные характеристики, являются плотность и диаметр волокон. Плотность материала можно регулировать в пределах 0,05 – 0,5 г/см3, диаметр волокон 5 – 500 мкм. Как известно, количество поглощаемого сорбентами вещества, прежде всего, зависит от их свободной площади и свойств поверхности.

Увеличение площади поверхности melt-blown материалов может быть достигнуто различными методами [3], одним из которых является измельчение. Полученные таким образом «перья» различаются не только уровнем развитости поверхности, но и механизмом осуществления сорбционного процесса.

Однако, предел измельчения частиц с целью увеличения их поглотительной способности по отношению к нефти и нефтепродуктам ограничен. С уменьшением размера частиц ПВМ происходит уменьшение их массы. При этом снижение может достигнуть критической точки, когда сила воздействия частицы на поверхность нефти не превысит силы ее поверхностного натяжения, и частица не смачивается. Соответственно, не происходит процесса адсорбции. Реальный предел измельчения в технологии производства адсорбентов зависит от использованного материала, но в целом составляет не менее 0,1 мкм.

Поглощение нефти и нефтепродуктов при локализации и ликвидации аварийных разливов на поверхности воды и суши гидрофобными порошковыми материалами, вместе с тем, не сводится только к процессу поверхностной адсорбции. Процесс адсорбции в реальных условиях доминирует лишь только в случае очистки поверхности водоемов от тонких мономолекулярных пленок нефти и нефтепродуктов. В случае применения предлагаемых ПВМ в виде «перьев» для очистки сильно загрязненной нефтью поверхности воды, наряду с процессом адсорбции, будет протекать процесс сгущения нефти вследствие образования суспензии гидрофобных частиц в данной жидкой фазе. В последующем образовавшиеся сгустки нефти с сорбентом можно будет легко собирать при помощи скиммеров.

Для эффективной очистки воды от нефти и нефтепродуктов ПВМ необходимо существенно повысить его сорбционные свойства. Один из самых простых и дешевых способов доработки будет заключаться в активации материала путем придания ему электретного заряда. Предполагается, что принцип действия адсорбента из измельченного электретного ПВМ будет дополнительно основан на захвате волокнами частиц нефти благодаря кулоновским и индукционным силам. Кулоновские силы будут действовать при захвате заряженных частиц, а индукционные – притягивать нейтральных путем наведения в них дипольных электрических моментов, что в свою очередь увеличит сорбционную способность ПВМ.