Смекни!
smekni.com

Предупреждение. Спасение. Помощь. Материалы (стр. 14 из 49)

Литература

1. Предотвращение загрязнения окружающей среды в нефтяной промышленности зарубежных стран. ОЗЛ, ВНИИОЭНГ, 1975. – 82 с.

2. Бочкарев Г.П., Шарипов А.У., Минхайров К.Л. и др. Сбор разлитой нефти с поверхности водоемов. – НТС сер. «Коррозия и защита», №7. 1980. – С. 23 – 25.

3. Гольдаде В.А., Макаревич А.В., Пинчук Л.С. и др. Полимерные волокнистые melt-blown материалы. – Гомель: ИММС НАНБ. – 2000. – С. 5.

Д.В. Вышинский, канд. воен. наук, доц., В.А. Иванов, канд. воен. наук, доц.

ФГОУ ВПО «Академия гражданской защиты МЧС России»

ЭКСПЕРИМЕНТАЛЬНОЕ ОБЕСПЕЧЕНИЕ НАУЧНЫХ ИССЛЕДОВАНИЙ

В АКАДЕМИИ ГРАЖДАНСКОЙ ЗАЩИТЫ МЧС РОССИИ

В Академии создана и функционирует учебно-лабораторная база, способствующая выполнению НИОКР.

Она включает в себя программно-аппаратные комплексы и информационно-обучающие модули в области гражданской защиты и оперативно-тактического управления (кафедра № 1), учебно-практический комплекс по подготовке пожарных и спасателей (кафедра № 2), информационно-аналитический модуль оперативного управления силами РСЧС (кафедра № 3), комплекс программ модуля (класса) радиационного и химического заражения (кафедра № 6), модуль подготовки специалистов по вопросам организации и обеспечения медицинской защиты населении и территорий (кафедра № 7), программные модули по инженерно-техническому обеспечению по ликвидации аварийных разливов нефти, последствий аварий на химически опасных объектах, последствий пожаров, аварий на атомных электростанциях, разрушительных землетрясений (кафедра № 8), аппаратно-программный комплекс (кафедра № 10), учебный специализированный компьютерный класс (кафедра № 11), учебные лаборатории гидрогазодинамики, квантовой и волновой оптики, электротехники и электромагнетизма (кафедра № 18), комплекс программ модуля (специализированного класса) комплексной оценки рисков (кафедра № 20), программно-аппаратный комплекс оповещения «Марс-арсенал» (кафедра № 24). Ряд созданных и внедрённых специализированных приборов позволяет проводить исследования инженерно-графического характера (кафедра № 16).

Наиболее эффективным научно-техническим и учебно-лабораторным комплексом является учебно-материальная база по диагностике опасных радиационно-химических веществ и процессов, включая радионуклиды и ФАВ, разработанные под руководством д-ра техн. наук, профессора И.А. Пушкина и д-ра техн. наук, профессора Н.П. Валуева (кафедра № 19).

Существующие программные комплексы и экспериментальные лаборатории позволяют при проведении научных исследований решать следующие задачи:

обеспечить эффективный информационный обмен между должностными лицами и подразделениями, автоматический мониторинг объектов и ресурсов, поддержку принятия решений и их документирование;

проводить экспертную и аналитическую оценку кризисных ситуаций, прогнозирование и выработку рекомендаций по предотвращению и ликвидации последствий ЧС;

оперативно оценивать возможные последствия ЧС на основе исходных данных; принимать рациональные решения о применении имеющихся ресурсов;

проводить моделирование и осуществлять прогноз обстановки в зоне природных и техногенных ЧС, расчет последствий основных видов ЧС;

осуществлять информационную поддержку принятия решений в сложившейся обстановке;

организовывать телекоммуникационные сети для обеспечения передачи оперативной информации, голосовой и видеоселекторной связи с ЦУКС субъектов с использованием беспроводного оборудования, спутникового терминала Inmarsat проводить оценку тактико-технических характеристик снаряжения и инструмента прогнозировать масштабы зон заражения при авариях на технологических емкостях и хранилищах ОХВ, при транспортировке ОХВ железнодорожным, трубопроводным и другими видами транспорта, а также в случае разрушения химически опасных объектов;

моделировать концентрацию ядовитых веществ в воздухе при авариях;

прогнозировать последствия аварий на АЭС;

возможные санитарные потери населения при ЧС природного и техногенного характера, при применении противником современных средств поражения в военное время;

проводить расчет потребности медицинских сил и средств для медицинского обеспечения пораженного населения при ЧС в мирное и военное время;

осуществлять моделирование информационных процессов деятельности мобилизационных органов при решении задач мобилизационной подготовки и мобилизации (в рамках деловых игр);

проводить испытания строительных материалов на прочность, вибрацию механических объектов, измерения и анализ уровня шума, исследования динамики и прочности металлоконструкций, измерения и анализ уровня загазованности воздуха;

исследовать микроструктуры материалов, чистоты их поверхности, замерять освещенности рабочих мест, определять высокие температуры дистанционным методом;

разрабатывать электрические схемы различного назначения и определять их характеристики;

проводить анализа водных проб на содержание тяжелых металлов;

определять концентрации кислот, щелочей и солей в водных растворах, концентрации горючих и взрывоопасных газов в воздухе, температуру воспламенения газов и паров горючих веществ, скорости коррозии металлических материалов;

осуществлять анализ и создание локальных систем оповещения на потенциально опасных объектах, моделирование систем оповещения объектового звена.

Более подробно информация о возможностях программных комплексов (модулей) и лабораторий будет размещена в сети Интранет.

Анализ показывает, что использование имеющейся научно-технической и учебно-лабораторной базы Академии позволяет обеспечивать качественное и квалифицированное проведение научных исследований в широком диапазоне проблем гражданской защиты, приоритетных направлений науки и критических технологий.

Е.В. Гайнуллина

ФГОУ ВПО «Уральский институт государственной противопожарной службы МЧС России»

защита природных вод от загрязнения синтетическими

поверхностно-активными веществами при помощи

Биоинженерных технологий

Синтетические поверхностно-активные вещества (далее – СПАВ) являются обязательным компонентом современных промышленных и хозяйственно-бытовых сточных вод, в том числе и прошедших полную биологическую очистку, эффективность которой составляет 48-80 %, а в зимний период – лишь 20 %. Некоторые из этих веществ способны оказывать отрицательное влияние на процессы биологической очистки сточных вод. Существенный вклад в поступление СПАВ в водные объекты также вносят ливневые стоки с территорий городов, промышленных объектов и сельскохозяйственных угодий. Содержание детергентов в них может достигать нескольких десятков грамм на дм3, в то время как предельно допустимые концентрации в поверхностных водах составляют 0,1 –0,5 мг/дм3.

Следы СПАВ обнаруживаются даже в воде многих городских водопроводов, поскольку при подготовке для хозяйственно-питьевых целей вода от них практически не очищается. По такому показателю как СПАВ вода, выходящая с типовых очистных сооружений, не соответствует не только нормативам ПДКр.х., но и ПДКо.с..

Биоинженерные сооружения, основанные на процессе биохимической деструкции СПАВ, сопровождающейся окислением их гетеротрофными микроорганизмами до простых веществ (углекислоты и воды), обладают целым комплексом достоинств, что делает их весьма привлекательным методом защиты вод от широкого спектра загрязняющих веществ, в том числе от СПАВ. Процесс этот протекает при наличии достаточного количества растворённого в воде кислорода и питательных веществ, обеспечиваемых наличием в водных объектах высшей водной растительности. Многофункциональность свойств высшей водной растительности позволяет сделать очистку и доочистку загрязнённых вод управляемой.

Поскольку применение гидроботанического способа для снижения содержания СПАВ в природных водах представляется весьма перспективным, были проведены исследования по изучению снижения содержания их в воде в присутствии трёх видов наиболее распространённой на Среднем Урале высшей водной растительности: воздушно-водной (рогоз узколистный Typha angustifolia L.), свободноплавающей (ряска малая Lemna L.) и погружённой (элодея канадская Elodea canadensis M. и рдест гребенчатый Potamogeton pectiatus L.).

Данные виды растительности отличаются высокой устойчивостью к разнообразным загрязняющим веществам. Однако для определения граничных пределов применения биоинженерных сооружений с рассматриваемыми видами растений по стандартной методике был определён порог токсичности по содержанию СПАВ в воде. Установлено, что для погружённой растительности концентрация СПАВ в воде не должна превышать 15 мг/дм3, а для свободноплавающей и воздушно-водной – 25 мг/дм3.

По результатам исследований наибольшая степень снижения содержания СПАВ в воде (до 99 % от исходного количества) выявлена в присутствии погружённой (элодея канадская) и воздушно-водной (рогоз узколистный) высшей водной растительности, а также доказана эффективность применения этих видов макрофитов в качестве загрузки в биоинженерных сооружениях для защиты природных водных объектов от загрязнения СПАВ.

В целом все рассмотренные системы, за исключением контрольных, включающих донные отложения и природную воду без растительности, характеризуются высокой самоочищающей способностью (табл. 1). Снижение содержания СПАВ в воде в отсутствии растительности происходит в четыре раза медленнее. Это говорит о том, что для системы растение–перифитон, характерен механизм интенсификации процессов жизнедеятельности бактерий прижизненными выделениями макрофитов.