Смекни!
smekni.com

Методические указания на тему «алгоритмизация учебной деятельности при решении задач по физике» (стр. 4 из 5)

Все выше сказанное можно дать в виде двух кратких формул:

· «не знаешь в какую сторону сделать шаг – сделай его в любую сторону» (правило восточных единоборств);

· «думать – значит действовать».

Что значит решить задачу. В практическом смысле, если речь идет о количественной (а не качественной) задаче – необходимо неизвестную величину выразить через известные, или получить зависимость (функцию) одной величины от другой, либо отношение величин, по данному условию задачи.

Прежде чем, дать детям алгоритм (очередность конкретных действий), общий для всех задач, и частные – по конкретным разделам физики, необходимо дать (даже под запись) два основных принципа, на которых основано решение любой задачи:

· решить задачу означает – понять условие, понять условие – увидеть процесс;

· «задача решается глазами» - задача решается через визуальное восприятие процесса, записи и оформление задачи.

Оба принципа взаимосвязаны и сводятся к тому, чтобы все события в задаче были смоделированы как можно детальнее

· в воображении («мультик», анимация), может быть, это один из самых сложных навыков, который необходимо осваивать ученику. Выше, уже говорилось об этом. В помощь воображению предлагается

· рисунок, и очень важно – технический рисунок.

Рисунок помогает удержать в воображении некоторые детали, ускользающие из картины воображения. Он может быть и черновой. Но всегда должно выполняться условие: не отягощать рисунок лишними деталями. Например, если сказано, что тело плавает в стакане с водой, совсем не надо изображать стакан, а только границу раздела сред и тело в виде прямоугольника, причем такого размера чтобы на нем можно было отметить объемы надводной, подводной части и общий (v1,v2,v0), и действующие на тело силы.

Основное требование к техническому рисунку – достаточно точное изображение прямых линий, дуг окружностей, углов без линейки, циркуля, транспортира.

От преподавателя требуется, чтобы учащиеся поверили, что от качества выполнения технического рисунка часто в большой степени зависит успех решения задачи, что соответствует правилу – «задача решается глазами». Можно много приводить доводов, в защиту этого одного из самых важных принципов. Но в самое кратчайшее время дети убеждаются в этом сами. Хорошо, когда в этом изначально убежден преподаватель, и каждый раз при решении задачи подсказывает и направляет на оптимальные варианты и технику выполнения рисунка.

Укажем на некоторые приемы и некоторые моменты при работе над техническим рисунком.

Основной принцип для получения четких, правильных линий – работать не кистью, а телом (принцип рейсшины). Например, нарисовать горизонтальную линию на доске можно, отклоняясь на прямых ногах всем телом вправо, а вертикальную – чуть приседая. Нарисовать дугу окружности или всю окружность, можно прямой вытянутой рукой строго зафиксировав тело напротив доски. Если мы даем некоторое время для тренировки у доски, у детей возникает удивление и восторг от красоты линий которые у них получаются без линейки буквально через несколько минут тренировок. Овладев приемами рисования на доске, практически автоматически через некоторое время тоже будет получаться в тетради, только работает не тело, а все предплечье.

Также стоит отметить некоторые важные моменты при работе с рисунком:

· рисунок должен быть достаточно «просторным», иначе, будучи перегружен деталями и обозначениями станет трудным для прочтения. И снова действует принцип: «задача решается глазами»;

· рисунок должен быть максимально адекватен условию задачи. Например, соблюдение углов и пропорций (разумеется, не во всех случаях);

· очень удобно, при решении задачи в общем виде, использовать стандартные углы -300 и 600, тогда возникающие при дополнительных построениях подобные углы легко будут читаться, что не требует дополнительных доказательств равенства углов;

· если в задаче указан квадрат или углы 450 стоит особенно тщательно отразить их на рисунке, что во многих случаях, также освободит от дополнительных выкладок и доказательств.

Вообще же если серьезно относится, и понимать важность качества рисунка многие правила будут напрашиваться по логике и по целесообразности. Например, как наиболее точно построить равносторонний треугольник.

Качество записи при оформлении задачи. Необходимо, убедить учеников, что процесс решения задачи представляет собой создание, обработку и обмен информацией заключенной в следующих объектах:

· условие в задачнике;

· условие в тетради («Дано: »);

· рисунок (диаграмма, график);

· алгебраические выкладки.

Поэтому, чем более точно, лаконично и удобно для восприятия записана эта информация в данных объектах, тем проще осуществляется поиск решения, само решение задачи. Укажем некоторые особенности, и приемы в этой части:

· при переносе информации из задачника в тетрадь, следует читать неявно заданные величины и отмечать их, как на рисунке, или диаграмме, так и в «Дано». Например, скорость в максимальной точке подъема вертикально брошенного вверх тела равна нулю, а ускорение равно ускорению свободного падения. Если не удается выявить сразу такие данные, желательно иметь в запасе место для их записи, при обнаружении. Поэтому, удобно записывать искомые величины сразу под «Дано», а все известные данные или неявно заданные - ниже, таким образом, всегда остается место для добавления обнаруженных величин или величин взятых из справочного источника;

· целесообразно данные записывать сразу в системе «СИ», а не дублировать их отдельной колонкой. Это экономит время и уменьшает вероятность ошибки при подстановке. Да и какой смысл выполнять одну и ту же работу дважды;

· при наличии больших и малых значений целесообразно приучиться записывать величины в виде со степенью, это в дальнейшем, при вычислениях ускорит работу;

· при работе с математическими преобразованиями желательно внедрять в привычку ученикам некоторые принципы, предварительно объясняя их значение;

· задача решается в общем виде, т.е. необходимо выразить искомую величину через данные в буквенном выражении, и только затем производить вычисления, подставив в полученное выражение числовые значения величин. Такой метод позволяет решать задачу и в тех случаях когда, казалось бы, для ее решения не хватает многих данных. Мы должны объяснить, что хоть эти величины не даны, но в реальности они есть («тело брошено под некоторым углом» - угол неизвестен, но он есть в реальном процессе) и эти величины можно обозначать на рисунке, подставлять в уравнения, просто наша задача, исключить их при решении используемых уравнений. Кроме того, даже если у нас нет таких величин, а мы задачу «решаем частями», каждый раз вычисляя промежуточную величину, мы теряет много времени, так как обычно, в общем виде мы получаем краткое, красивое выражение, и считаем всего один раз.

Существует масса простых приемов, которые требует некоторых усилий при написании, так как часто на это просто не обращают внимание, а в дальнейшем ученику приходится переучиваться, например:

· приучить ученика писать любую дробь с дробной черты. Наиболее распространенная привычка – числитель, черта, знаменатель, что часто приводит к возникновению «многоэтажных» дробей и неудобству работы с ними. Если же мы видим дробную черту, то мы практически форматируем пространство в виде таблицы, а в дальнейшем вносим в эту таблицу другие величины и математические выражения;

· другая «ошибка» - дети обозначают квадратный корень. Потом пытаются записать под него «неожиданно» большое выражение. В дальнейшем такое выражение просто трудночитаемо. Очень просто наоборот: пишем выражение, потом обводим знаком корня. Просто записать, но непросто переучиться;

· часто, мы сталкиваемся с тем, что ученик в 10-11 классе работает с логарифмом, может взять производную функции, но совершенно не справляется с обычными переносами, пропорцией, выражением величины из уравнения. Поэтому в начале обучения, несколько часов желательно затратить на восстановление некоторых забытых разделов математики: алгебры, элементов тригонометрии, перевода единиц, в дальнейшем эти записи могут служить справочным материалом, хотя через короткое время надобность в нем отпадает.

В алгебре особое внимание – правила переноса в пропорциях «крест –накрест», и перенос с обратным знаком. А также правило: «Выразить неизвестную величину – это оставить её одинокой, перенести все лишнее в другую сторону уравнения».

В тригонометрии работа с треугольником и основное «правило» для запоминания: cos, ctg – связываем с «кошечкой», которая любит ластиться – угол прилежащий, sin, tg наоборот – противолежащий.

В векторной алгебре основные принципы, которые первое время необходимо постоянно курировать:

· вектор – не число (нельзя модуль вектора подставить в выражение векторного действия);

· все, что связано с векторами, – это геометрия (вектор, действия с ним изображается только на рисунке, после чего рассматривается геометрическая задача);

· подробно рассмотреть понятия: составляющая вектора, разложение на составляющие; проекцию вектора, как длину составляющей со знаком + или - , указывающих на направление составляющей;

· рассмотреть подробно правило «Действия с векторами - сложение, вычитание, умножение на число автоматически верны для их проекции», так как чаще всего используют два способа решения уравнений содержащих вектора геометрический и в проекциях;

· так как в курсе школьной математики вектор чаще рассматривается как абстрактная математическая категория, желательно с самого начала пояснить его реальный смысл для физики, что в физике без понятия «направление» обойтись невозможно.

При работе с переводами единиц очень важно дать логику перевода. Например: