Методические указания
на тему
«АЛГОРИТМИЗАЦИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ ПРИ РЕШЕНИИ ЗАДАЧ ПО ФИЗИКЕ»
Автор: Владимир Анатольевич Мишин, учитель физики высшей категории
г. Пильна, 2011 г
Оглавление
2. Некоторые общие принципы.. 6
3. Технология лекционно-зачетной методики. 9
5. Принципы работы с конспектом. 15
6. Развитие монологической речи. 16
7. Технология решения задач. 19
8. Алгоритмы решения задач. 27
8.1. Общий алгоритм решения задач. 27
8.2. Алгоритмы к задачам по темам. 28
Цель данной методической разработки показать целесообразность преподавания курса физики в старших классах общеобразовательной школы на основе модульной технологии обучения, которая включает в себя следующие логические модули (разделы):
· лекция по теме;
· составление конспекта по первоисточнику;
· развитие монологической речи;
· зачет по теме (письменный, устный, взаимозачет);
· решение задач (алгоритм, примеры решения, решение задач);
· самостоятельное решение задач;
· контрольная работа.
Такая технология преподавания дает материал в более целостном виде, материал сохраняет непрерывность логики при его изучении, способствует формированию структурного мышления учащихся. Учитывая, что при работе с лекциями (от восприятия, записи до подготовки к зачету) учащиеся используют несколько типов памяти, понимание и запоминание темы происходит более надежно и прочно. В дальнейшем, на зачете и при решении задач материал закрепляется и остается в долговременной памяти учащегося.
Опыт показывает, что при такой форме обучения уменьшаются временные затраты, в сравнении с наиболее распространенной – поурочной формой изучения физики в школе. Таким образом, модульную технологию обучения можно отнести к более эффективным технологиям в обучении.
Для многих учащихся целью изучения физики в школе, помимо базовых представлений о фундаментальных законах природы, является продолжение образования в высших учебных заведениях и дальнейшее использование полученных знаний, умений и навыков в своей профессиональной деятельности, основой которых в физике является умение решать задачи. И в первую очередь это умение необходимо для успешной сдачи Единого Государственного экзамена учащимися, которые выбрали ВУЗы, предусматривающие дальнейшее изучение физики, а также предметов связанных с нею тесным образом.
Чаще всего обучение решению задач в школе происходит по методике, основанной на примерах решения, показанных учителем, когда учащемуся не дается четкая последовательность действий при решении того или иного типа задач. Такая методика часто является основополагающей, несмотря на её неструктурированность и энергозатратность. «Самый эффективный способ научить решать задачи – это просто показывать, как они решаются» (Гельфгат И.М., Генденштейн Л.Э., Кирик Л.А. «Решение ключевых задач по физике для профильной школы» -2008).
Метод алгоритмов может показаться механическим методом, который не стимулирует эвристическое мышление. Однако этот метод воспитывает:
· развитие системного мышления;
· умение структурного видения;
· развитие навыка структурирования объектов (деятельности, лекций, информации и т.д.).
После получения навыков решения простых задач с помощью алгоритмов решение более сложных задач, так или иначе, потребует образного и эвристического мышления.
Однако все сложные задачи сводятся к более простым, а знание и умение пользоваться алгоритмами вселяет в учащегося уверенность при решении задач. Ученик, умеющий структурно увидеть задачу, решает ее более легко и уверенно.
Данная методика опробована как при изучении курса физики в старших классах общеобразовательной школы, так и на подготовительных курсах для поступающих в ВУЗы.
Опыт показывает, что использование данной методики довольно эффективно: большой процент учащихся успешно сдают экзамен по физике в ВУЗы с изучением этого предмета, а также становятся призерами школьных и районных олимпиад по физике.
Преподавание проводилось на базе одного из лучших пособия для поступающих в ВУЗы – задачника «Физика сборник задач» Г.А.Бендриков, Б.Б.Буховцев, В.В.Керженцев, Г.Я.Мякишев, претерпевшего около 12 изданий с конца 50-х годов. Структура этого задачника такова, что задачи по разделам физики расположены в порядке возрастания сложности, их содержание и условия точно выверены по смыслу, что дает возможность однозначно смоделировать процесс, рассматриваемый в задаче. Дополнительно использовались разнообразные пособия по физике [1-6].
В начале 90-х годов интенсивно стала изменяться программа по физике и сокращаться часы, например, на базовую механику, в которой вводятся такие фундаментальные понятия как механическое движение, механическая работа, сила, энергия, импульс, кроме того вводится серьезный математический аппарат – элементы тригонометрии, векторной алгебры, геометрии, алгебры как прикладных к физике дисциплин. Несмотря на обширный материал и его значимость, программа по часам сократилась на треть.
Для обучения решению задач и тренинга по решению задач в программе выделено не достаточно много времени, хотя современный экзамен по физике предполагает именно навык быстрого решения задач. Кроме того, принято считать, что решение задач не требует отдельного обучения, а именно - технологии решения задач, в крайнем случае, учитель показывает пример решения одной-двух задач. В современных учебниках для средней школы, кроме подачи теории, почти не уделяется места для обучения тому, как решать задачи, опять же, в крайнем случае – один-два примера. Сама же теория в школьных учебниках излагается слишком пространно, так что сущность вопроса составляет не более 10% от текста. Понятно, что такое изложение предполагается самой стилистикой школьного учебника. Кроме того во многих школьных учебниках изъят физический смысл из множества определений, формулировок, законов. Часто этот смысл разъясняется отдельно, на что тратится дополнительно текст и время, кроме того он оказывается оторванным от самого определения. Вот два наиболее часто встречающихся варианта.
Вариант первый. Все величины, определяющиеся через отношение (плотность, скорость, напряженность электрического поля и т.д.) так и определяются – например: плотность равна отношению массы тела к его объему, и далее следует формула:
.В сознании ученика утверждается представление о физике, как о предмете, манипулирующем математическими формулами и только, поэтому легче всего решаются задачи на подстановку одних формул в другие.
Одно из первых замечаний, которое желательно сделать в начале лекций следующее: отношение А/В означает – что-то (А) в единице чего-то (В). При каждом аналогичном случае хорошо бы вспоминать с учениками данное утверждение.
Определение плотности в таком случае становится следующим: «Плотность вещества (
) – физическая величина, которая показывает, какая масса (m) содержится в единице объема (V) данного вещества».Или разрешается более лаконично на зачете или при устном ответе (важно понимание смысла учеником): плотность - масса (m)в единице объема(V). Во многих случаях можно пренебречь «правильностью» речи в лекциях, чтобы сделать мысль более «математической», более лаконичной для простоты понимания сущности выражения. В дальнейшем, если ученик встречает подобное «математическое» выражение он лучше понимает смысл величины, например, при рассмотрении ускорения свободного падения легко сообразить, что при свободном падении скорость увеличивается (или уменьшается) за каждую секунду примерно на 10 м/с, а встречаясь с градиентом потенциала – при смещении вдоль линий напряженности на 1 м – убыль потенциала численно равна напряженности поля.
Наоборот, по словесному определению ученик может составить математическую формулу величины. Важно напоминать, что математика – это язык, и очень полезно уметь при решении задач переводить с русского на математический и обратно, со временем этот процесс будет происходить автоматически.
Вариант второй. Очень часто математическая формулировка 2-го закона Ньютона записывается в школьных учебниках в виде следующего соотношения:
.В «устном виде» данный закон формулируется как: «Равнодействующая всех сил, действующих на тело (а иногда, и просто – сила) равна произведению массы тела на его ускорение». Обратим внимание, что внимание ученика в данной формулировке не концентрируется на причине и следствии, что на самом деле полезно: сила - есть причина ускорения, но не наоборот.
Поэтому более точна формулировка: «Ускорение тела пропорционально векторной сумме всех сил, действующих на него и обратно пропорционально его массе». И формула:
.Ученику очень важно понимать, как появились те или иные законы и их математические формулы. В учебниках, обычно, много места уделяется выводам и «доказательствам». Несомненно, что это важная составляющая материала, однако не следует забывать, что еще важнее сам физический смысл закона. Достаточно однажды рассказать, на конкретном примере, об опытах, из которых эти законы следуют, а в дальнейшем употреблять формулировку: «Опыт показывает…» или «Из опыта следует…», в некоторых случаях описывать эти опыты, либо выносить историю вопроса на дополнительные занятия. Конечно, приходиться жертвовать историей физики, но учитывая дефицит времени, и главную цель – научить технологии решения задач, преподаватель часто вынужден идти на это.