2). Покажем, что для любых х и а
(15)
Из определения арктангенса и с помощью замены переменной получаем, что это неравенство равносильно неравенству
где (16)
Если х и а одного знака, то
Мы воспользовались известным неравенством
Из него же следует справедливость (16) для х и а разного знака. Из неравенства (15)следует, что в качестве искомого можно взять : если , то получаем, чтоПусть функция определена в точках некоторой окрестности точки а, кроме, быть может, самой точки а.
Определение. Точка а называется точкой разрыва функции
, если она не определена в точке а или определена в этой точке, но не является в ней непрерывной.Если а – точка разрыва и существуют конечные пределы
и , то а называется точкой разрыва первого рода. Если при этом , то а называется точкой устранимого разрыва.Точки разрыва функции
, не являющиеся точками разрыва первого рода, называются точками разрыва второго рода. Если при этом или , то а называется точкой бесконечного разрыва.Если в некоторой полуокрестности слева или справа от а
не определена, то для определения характера разрыва рассматривают только или .Пример 40. Найти точки разрыва функции
и исследовать их характер.
Решение. В точках
функция непрерывна, поскольку является произведением или частным непрерывных функций. В точке оба односторонних предела существуют и не равны: . Следовательно, - точка разрыва первого рода. В точке х=1 , следовательно, - точка разрыва второго рода( точка бесконечного разрыва).
Пример 41. Определить точки разрыва функции
и исследовать их характер.Решение. Находим область определения
функции: Отсюда или . На функция непрерывна: на множестве в силу арифметических свойств и непрерывности корня, а в точках - поскольку они являются изолированными (отдельными) точками . Таким образом, точками разрыва могут быть только . Находим . Поскольку чётная, то и . Следовательно, - точки устранимого разрыва.Пример 42. Исследовать на непрерывность функцию
и построить её график.Решение. Пусть х>0. При х>1
и у=0. При у=1. При и Таким образом, при(одновременно строим график, рис. 2 );
Следовательно, , являются для у точками разрыва первого рода. Пусть теперь х<0. При х < -1 и . При , у=1. При и Таким образом, при Получаем, что и точки , являются точками разрыва первого рода. Поскольку то х=0 является точкой устранимого разрыва. Во всех остальных точках функция непрерывна.Рис. 2
Л И Т Е Р А Т У Р А
1. Демидович Б.П. Сборник задач и упражнений по математическому анализу: Учеб.пособие для вузов.- М.: ООО «Издательство Астрель»: ООО «Издательство АСТ», 2002.- 558 с.
2. Ляшко И.И., Боярчук А.А., Гай Я.Г., Головач Г.П. Математический анализ в примерах и задачах, ч.1. Введение в анализ, производная, интеграл. – Киев, Издательское объединение «Вища школа», 1974.-680 с.
3. Кузнецов Л.А. Сборник задач по высшей математике. Типовые расчёты: Учебное пособие. 3-е изд., испр.-СПб.: Издательство «Лань», 2005. -240 с.
4. Кузнецова М.Г. Типовой расчёт по высшей математике: Пределы.- Ульяновск: УлПИ, 1987.- 24 с.