Ульяновский государственный университет
Кафедра алгебро-геометрических вычислений
Л.А. Штраус, И.В. Баринова
П Р Е Д Е Л Ы
Методические указания для студентов факультета математики
и информационных технологий и факультета управления
Ульяновск-2007
Штраус Л.А., Баринова И.В. Пределы. Ульяновск: УлГУ.-2007.
Методические указания составлены в соответствии с учебными программами курсов математического анализа для факультета математики и информационных технологий и факультета управления и относятся к разделу «Введение в анализ». Они будут способствовать усвоению теоретического материала и формированию вычислительных навыков у студентов первого курса по одной из первых тем дисциплины, преодолению разрыва между уровнем математической подготовки выпускников средней школы и требованиями, предъявляемыми к уровню знаний студентов. Рассматриваемые задачи занимают максимально широкий диапазон - от простейших упражнений, соответствующих сборнику [3](по которому можно составлять индивидуальные семестровые задания) и контролирующих формирование необходимых вычислительных навыков, до серьёзных задач из сборника [1]. В последнем случае предлагаемые решения классических задач не копируют решений из [2] и соответствуют логике изучения дисциплины. Некоторые понятия, обязательные для изучения на факультете математики и информационных технологий (верхний и нижний пределы последовательности, равномерная непрерывность функции и др.) не рассматриваются в данных указаниях. Однако многие из основных определений здесь приведены. Перед их применением необходимо ознакомиться с соответствующим материалом по конспекту лекций или учебнику.
Предел последовательности
Определение. Число а называется пределом последовательности
, если для любого существует номер N такой, что при всех n>N выполняется неравенство(
).Пример 1. Доказать, что
(указать ).Решение. Неравенство
из определения предела последовательности, которое мы должны решить относительно n, принимает вид Пусть . Тогда , откуда , следовательно, в качестве N можно взять . Здесь - целая часть числа , то есть наибольшее целое число, не превосходящее . Если, например, , то условиям задачи отвечают натуральные числа , то естьПример 2. Доказать, что
(указать ).Решение. Неравенство
принимает вид , Последнее неравенство преобразуется в квадратное. Однако вычисления можно упростить. Неравенство будет выполняться, если справедливо следующее двойное неравенство: Его левая часть заведомо выполняется при . Правая часть выполняется при . Следовательно, условиям задачи отвечают числа ОтсюдаПри вычислении предела
в случае и (т.е. в случае неопределённости вида ) или в случае , и т.д. нельзя сразу воспользоваться арифметическими свойствами предела. Следует так преобразовать выражение , чтобы можно было использовать свойства предела и раскрыть неопределённость, т.е. найти предел. Полезным для этого в случае бывает вынести в числителе и знаменателе старшие степени за скобки или разделить числитель и знаменатель на старшую степень одного из них.Пример 3. Найти предел
.Решение. Преобразуем исходное выражение, выполнив действия в числителе и знаменателе:
. Разделив числитель и знаменатель на их старшую степень , получим . Поскольку то по свойствам предела получаемВообще предел отношения двух многочленов переменной
можно находить по правилу(1)
так что в решении последнего примера можно было обойтись без деления на
.При вычислении пределов используют формулу бинома Ньютона
(2)Также следует знать формулу
( «эн-факториал»- произведение натуральных чисел от 1 до n; например, ).Пример 4. Найти предел
.Решение. Разделим числитель и знаменатель исходного выражения на
-старшую степень числителя и знаменателя. Действительно, показатель степени суммы равен наибольшему показателю степени слагаемых, поэтому для числителя он равен 2 (
). Показатель степени произведения равен сумме показателей степеней сомножителей. Показатели степени выражений равны 1, поэтому показатель степени знаменателя равен 1+1=2. Тогда Поскольку при то , и по свойствам предела получаемПри вычислении пределов, содержащих иррациональные выражения, часто используют приём перевода иррациональности из числителя в знаменатель или наоборот с помощью формул сокращённого умножения
(3)