Смекни!
smekni.com

Искусственный интеллект” и проблема субъективного в философии (стр. 2 из 8)

На сегодняшний день наиболее популярно определение искусственного интеллекта как системы способной решать интеллектуальные задачи, т.е. задачи, которые человек обычно решает посредством своего интеллекта (интеллектом принято называть способность приобретать новые и использовать ранее накопленные знания, что подразумевает способность эффективно действовать в нестандартных ситуациях.). Мне такое определение искусственного интеллекта представляется не вполне конкретным. Оно вносит неоднозначность, так как согласно ему требования к функциям, выполняемым системой ,могут варьировать в широких пределах. Например, на заре электронной эры, когда исследователи-кибернетики еще не знали об ограничениях применяемого ими подхода, они постулировали создание систем, превосходящих человека по широкому кругу вопросов. Впоследствии, столкнувшись с проблемами, разработчики программ для электронных устройств перенесли основной акцент на создание экспертных систем, и такие системы, имея редуцированные в целом функции, сохранили за собой наименование искусственного интеллекта. Еще больше критики вызывает так называемый тест Тьюринга или игра в имитацию. Обе попытки определить данное понятие страдают антропоморфизмом. Причина сложности видимо кроется в семантической неадекватности термина “искусственный интеллект”. Причем это частный случай более широкой проблемы. Так, например, постановка вопроса “может ли машина мыслить?” была обусловлена тем, что при использовании моделирования для изучения мыслительной деятельности стала применяться техническая, точнее, кибернетическая технология, а термины биологии, физиологии и психологии стали проникать в кибернетику. Как справедливо выразился Э.Хольст, “cторонники кибернетики распоряжаются по своему усмотрению тем запасом знаний, который был накоплен с таким трудом отдельными науками…”. Подведение под определенный термин не соответствующего ему понятия порождает так называемые “языковые ловушки”. Так описание психического процесса при помощи технических терминов нередко приводит к “открытию” машиноподобности психики, мышления. Вот что говорил по этому поводу один из крупнейших кибернетиков Ст. Бир: “Модель языка системы, которым пользуется кибернетика, вносит в описание такие смысловые оттенки, от которых нам хотелось бы избавиться. Но мы не в силах этого сделать и поэтому всегда должны помнить о возможности неверных толкований при обсуждении нервных систем, мозга и машин”.

Допустим все же, что можно согласиться с таким обозначением рассматриваемого понятия как “искусственный интеллект”. Какие же признаки позволяют однозначно отнести ту или иную вычислительную систему к разряду интеллектуальной? Характеризуя особенности систем “искусственного интеллекта”, Л. Т. Кузин указывает на: 1) наличие в них собственной внутренней модели внешнего мира; эта модель обеспечивает индивидуальность, относительную самостоятельность системы в оценке ситуации, возможность семантической и прагматической интерпретации запросов к системе; 2) способность пополнения имеющихся знаний; 3) способность к дедуктивному выводу, т.е. к генерации информации, которая в явном виде не содержится в системе; это качество позволяет системе конструировать информационную структуру с новой семантикой и практической направленностью; 4) умение оперировать в ситуациях, связанных с различными аспектами нечеткости, включая “понимание” естественного языка; 5) способность к диалоговому взаимодействию с человеком; 6) способность к адаптации. Некоторые из указанных критериев будут обсуждаться ниже.

При характеристике мышления необходимо отметить, что его основная функция заключается в выработке схем целесообразных внешних действий в бесконечно варьирующих условиях. Специфика человеческого мышления (в отличие от рассудочной деятельности животных) состоит в том, что человек вырабатывает и накапливает знания, храня их в своей памяти. Выработка схем внешних действий происходит не по принципу «стимул - реакция», а на основе знаний, получаемых дополнительно из среды, для поведения в которой вырабатывается схема действия.

Этот способ выработки схем внешних действий (а не просто действия по командам, пусть даже меняющимся как функции от времени или как однозначно определенные функции от результатов предшествующих шагов), является существенной характеристикой любого интеллекта. Если задача не является мыслительной, то она решается на ЭВМ традиционными (алгоритмическими) методами и, значит, не входит в круг задач “искусственного интеллекта”. Ее интеллектуальная часть выполнена человеком. На долю машины осталась часть работы, которая не требует участия мышления, т. е. “безмысленная”, неинтеллектуальная.

Отсюда следует, что к системам “искусственного интеллекта” относятся те, которые, используя заложенные в них правила переработки информации, вырабатывают новые схемы целесообразных действий на основе анализа моделей среды, хранящихся в их памяти. Способность к перестройке самих этих моделей в соответствии с вновь поступающей информацией является свидетельством более высокого уровня “искусственного интеллекта”.

Принципы обработки информации, заложенные в первые вычислительные устройства, определялись традиционными представлениями о могуществе формальной логики. Жесткие алгоритмы предписывали устройству поочередно шаг за шагом выполнить некоторые арифметические преобразования. И с такой задачей устройства успешно справлялись. Но далее сложилась парадоксальная ситуация: компьютеры прекрасно имитировали высшие формы абстрактной деятельности человека, такие как решение сложных инженерных задач и в тоже время им были недоступны более “примитивные” способности типа распознавания изображений, понимания конструкций языка. Попытки экстенсивного наращивания скорости и объема вычислений проблему не решили. Стало очевидно, что необходим пересмотр фундаментальных принципов работы решающих устройств.

Первым реальным шагом на пути преодоления ограничений алгоритмического подхода была разработка эвристического программирования. Решению задачи может способствовать использование информации самого различного рода: информация может подсказать порядок, в котором следует проверять возможные решения или послужить основанием, для того чтобы исключить из рассмотрения целый класс возможных решений. Всякая информация такого рода есть эвристика, т.е. то, что способствует открытию. Иными словами суть эвристического поиска - сокращение числа перебираемых вариантов без потери качества решения, благодаря содержащейся в задаче дополнительной информации. Эвристики в редких случаях могут служить безошибочным руководством, их результаты варьируют от задачи к задаче, и успешность их применения нельзя гарантировать. Однако, руководствуясь такими инструкциями, машина проявляет больше “человеческих” свойств, ей становится доступным принципиально новый круг задач (например, поиск в лабиринте). Именно в 50-х годах, когда был открыт принцип эвристического программирования, термин “искусственный интеллект” получил еще одно толкование, теперь им обозначалась область исследований, в которой цифровые машины используются для моделирования разумного поведения.

Другим подходом было создание алгоритмов, которые обеспечили бы компьютерам способность обучаться, или, иначе говоря, способность изменяться под влиянием собственного опыта. К сожалению, системы искусственного интеллекта практически неспособны активно воздействовать на внешнюю среду, что отрицательно сказывается на возможностях самообучения и вообще совершенствования «интеллектуальной» деятельности. Простые процессы ассоциативного обучения были промоделированы на цифровых машинах, но такое обучение имеет мало общего с тем, что мы наблюдаем у человека или высокоорганизованных животных.

Задача создания обучающихся систем непосредственно связана со структурированием знаний, объем которых может быть грандиозным. Вспомним, что наличие собственной модели мира неотъемлемый признак “искусственного интеллекта”. Формирование такой модели связано с преодолением синтаксической односторонности системы, т.е. с тем, что символы или та их часть, которой оперирует система, интерпретированы, имеют семантику. На начальных этапах разработки проблемы искусственного интеллекта ряд исследователей, особенно занимающихся эвристическим программированием, ставили задачу создания интеллекта, успешно функционирующего в любой сфере деятельности. Это можно назвать разработкой «общего интеллекта». Сейчас большинство работ направлено на создание «профессионального искусственного интеллекта», т. е. систем, решающих интеллектуальные задачи из относительно ограниченной области (например, управление портом, интегрирование функций, доказательство теорем геометрии и т.п.). Тем самым создаются предпосылки для устранения неоднозначности семантической интерпретации, что упрощает процесс реализации функций самообучения. Такие специализированные системы получили название экспертных. Однако даже на современном этапе экспертные системы не в полной мере оправдывают свое название. Они представляют собой скорее склад знаний, которыми обладают различные эксперты и только в этом могут принести пользу при определенных обстоятельствах. Однако элемент интеллектуальности у этих систем все-таки имеется. Дело в том что самостоятельное структурирование огромных массивов информации является довольно сложной задачей. Основой современных экспертных систем служат фреймы – крупная, структурированная единица знаний, основанная на фактах и процедурах. Фактуальные (декларативные) знания – база данных. Важнейшая часть базы данных – сценарий описывающий внешнюю обстановку, с которой взаимодействует эксперт. Процедурные знания – множество правил вывода (продукций) для базы знаний. Правила включают информацию о методах сужения области поиска. Отдельные фреймы взаимосвязаны и образуют единую систему. Единство системы реализуется с помощью дополнительной информации, содержащейся в каждом фрейме. Она включает сведения о способе обращения с данным фреймом, о действии, которое нужно выполнить, о действии которое нужно выполнить, если текущие предположения не оправдались. Таким образом, фрейм включает способы переадресации к другому фрейму, а иногда переадресация осуществляется по аналогии. Еще одна характерная особенность фрейма связана с наследованием атрибутов, что позволяет избегать дублирования информации и устранять противоречивые данные