В процессе постановки задачи необходимо помнить, что модель должна, во-первых, правильно воспроизводить действительность, во-вторых, быть доступной для исследования. Эти два обстоятельства оказывают существенное влияние на выбор исходных предпосылок. При моделировании экономических систем, исходя из цели исследования, с одной стороны, необходимо выбрать самые важные в условиях данной задачи факторы и ввести в модель только те, которые самым существенным образом влияют на результат решения, на достижение поставленной цели. Учет в модели несущественных факторов приводит к тому, что модель становится сложной для понимания моделируемой системы и для решения. С другой стороны, игнорирование многих факторов может привести к чрезмерному упрощению модели, нарушению соответствия ее действительности. Компромисс между этими двумя требованиями достигается методом проб и ошибок. Эйнштейн утверждал, что правильная постановка задачи более важна, чем ее решение.
Второй этап - построение математической модели
На этом этапе проводится формализация задачи - построение математических зависимостей в виде уравнений, неравенств, функций и т.п. Формализованную с помощью математического аппарата запись экономической задачи называют моделью задачи.
Приступая к формализации экономического процесса, необходимо проанализировать, подходит ли для его описания одна из ранее созданных ЭММ. К настоящему моменту создано несколько десятков так называемых универсальных, или типовых, моделей (модель транспортной задачи, модели задачи о ранце, диете, раскрое и т.п.), которые используются на практике для описания различных экономических процессов. Самой универсальной моделью считается модель транспортной задачи, с помощью которой формализуется не только процесс перевозки грузов, но и процесс размещения предприятий отрасли на определенной территории, процесс назначения работников на работы и др.
Третий этап - получение решения с помощью построенной модели.
Основные задачи данного этапа. Первая задача - сбор и обработка необходимой для модели достоверной исходной информации, определение числовых значений параметров и внешних переменных. На практике не всегда удается собрать требуемую информацию, что приводит к невозможности использования модели в полученном виде. Тогда приходится возвращаться к постановке задачи и приспосабливать ее к имеющимся исходным данным.
Вторая задача - выбор метода получения решения: используются аналитические (формульные) и численные экономико-математические методы: симплекс-метод, метод потенциалов и др.
Экономико-математические методы в определенной степени универсальны и используются для решения различных экономических задач. Однако не любая задача укладывается в рамки модели, для которой уже разработаны эффективные аналитические или численные методы решения. В этом случае пользуются другими методами получения решения, в частности эвристическими и имитационными методами исследования систем.
Эвристика (в переводе с греческого - нахожу, придумываю, открываю) - это совокупность неформальных методов решения задач (эвристических методов), основанных на прошлом опыте, интуиции решающего. Эвристические методы в общем случае не гарантируют получение наилучшего решения, поскольку они опираются не на доказательства, а на так называемые правдоподобные рассуждения.
Имитационное моделирование следует рассматривать как новую методологию, новое направление в моделировании, позволяющее расширить его возможности. Под имитационным моделированием понимается экспериментирование с моделью реальной системы, в частности, вычислительный эксперимент, проводимый с помощью математической модели путем изменения различных исходных предпосылок. Поскольку вручную такие эксперименты просто невозможны, ИМ получило развитие только с появлением ЭВМ.
Имитация (в переводе с латинского - подражание) - это воспроизведение чего-либо искусственными средствами, что позволяет постичь суть явления, не прибегая к экспериментам на реальном объекте.
Имитационные модели служат для анализа поведения системы в условиях, определяемых экспериментатором.
Четвертый этап - применение полученных с помощью модели результатов на практике.
Сложность экономических процессов и явлений, другие особенности экономических систем затрудняют не только построение моделей, но и проверку их адекватности - соответствия ЭММ рассматриваемой экономической системе, цели ее исследования. Любая модель любой системы предполагает абстрагирование от некоторых реальных свойств объекта и отражает лишь основные его свойства. На данном этапе проверяется, насколько принятые допущения правомерны и, следовательно, применима ли построенная модель для исследования моделируемой системы. В случае необходимости модель корректируется.
С целью обоснования пригодности модели для конкретных исследований проводится так называемый анализ модели на чувствительность. Полученное с помощью ЭММ решение анализируется на чувствительность путем изменения исходной информации в определенных пределах. Важность данной задачи состоит в том, что исходная информация со временем может меняться и необходимо знать, как будут влиять эти изменения на получаемое решение.
1.4. Общая постановка задачи исследования операций.
Все факторы, входящие в описание операции, можно разделить на две группы:
- постоянные факторы (условия проведения операции), на которые мы влиять не можем. Обозначим их через
- зависимые факторы (элементы решения) x1,x2,..., которые в известных пределах мы можем выбирать по своему усмотрению.
Критерий эффективности, выражаемый некоторой функцией, называемой целевой, зависит от факторов обеих групп, поэтому целевую функцию Z можно записать в виде
Z = f(x1,x2,...,
Все модели исследования операций могут быть классифицированы в зависимости от природы и свойств операции, характера решаемых задач, особенностей применяемых математических методов.
Следует отметить прежде всего большой класс оптимизационных моделей. Такие задачи возникают при попытке оптимизировать планирование и управление сложными системами, в первую очередь экономическими системами. Оптимизационную задачу можно сформулировать в общем виде:
найти переменные x1,x2,...,xn, удовлетворяющие системе неравенств (уравнений)
(1.1)
и обращающие в максимум (или минимум) целевую функцию, т.е.
Z = f( (1.2)
(Условия неотрицательности переменных, если они есть, входят в ограничения (1.1)).
В тех случаях, когда функции f и
Математическое программирование - область математики, разрабатывающая теорию и численные методы решения многомерных экстремальных задач с ограничениями, т.е. задач на экстремум функции многих переменных с ограничениями на область изменения этих переменных.
Функцию, экстремальное значение которой нужно найти в условиях экономических возможностей, называют целевой, показателем эффективности или критерием оптимальности. Экономические возможности формализуются в виде системы ограничений. Все это составляет математическую модель.
Математическая модель задачи - это отражение оригинала в виде функций, уравнений, неравенств, цифр и т.д.
Если критерий эффективности Z = f(x1,x2,...,xn) представляет линейную функцию, а функции
Если в задаче математического программирования имеется переменная времени и критерий эффективности (1.2) выражается не в явном виде как функция переменных, а косвенно - через уравнения, описывающие протекание операций во времени, то такая задача является задачей динамического программирования.
Из перечисленных методов математического программирования наиболее распространенном и разработанным является линейное программирование. В его рамки укладывается широкий круг задач исследования операций.