КГБОУ СПО
«Сосновоборский автомеханический техникум»
МЕТОДИЧЕСКИЕ УКАЗАНИЯ
и контрольные задания для студентов заочной формы обучения
на базе основного общего образования ( 9 классов )
2008
СОГЛАСОВАНО УТВЕРЖДАЮ
ЗАМ.директора по УМР
Протокол №____от ____________ Л.С.Корсакова
«___»________2008 «___»____________2008
Методические указания составлены
в соответствии с примерной программой по математике,
Государственными требованиями к минимуму
содержания и уровню подготовки выпускников
на базе среднего (полного) общего
образования.
Составитель : Петрова Н.Г.
СОДЕРЖАНИЕ :
1. Пояснительная записка.
2. Программа.
3. Методические указания .
4. Контрольные задания.
5. Литература
6. Экзаменационный материал ( тесты ).
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.
Настоящее методическое пособие предназначено для студентов заочной формы обучения на базе основного общего образования (9 классов ) по дисциплине математика .
Данное методическое пособие ставит своей целью оказание помощи студентам-заочникам в организации их работ по овладению системой знаний и умений в объеме действующей программы по математики на базе среднего (полного) общего образования. Учебная дисциплина «Математика» является естественнонаучной , формирующей базовые знания для освоения общепрофессиональных и специальных дисциплин.
В результате изучения дисциплины студент должен :
иметь представления :
- о роли математики в современном мире, общности ее понятий и представлений ;
знать и уметь:
-использовать математические методы при решении прикладных задач.
Рабочая программа по математике рассчитана на 312 часов из них 93,6 час. на теоретические занятия и 218,4 час. на самостоятельную учебную нагрузку студенту. Программа по математике состоит из 14 разделов.
Раздел 1 «Действительные числа»
Раздел 2 «Тригонометрические выражения»
Раздел 3 «Тригонометрические функции»
Раздел 4 «Тригонометрические уравнения»
Раздел 5 «Производная»
Раздел 6 «Применение производной»
Раздел 7 «Показательная и логарифмическая функции»
Раздел 8 «Интеграл»
Раздел 9 «Аксиомы стереометрии и их простейшие свойства»
Раздел 10 «Параллельность прямых и плоскостей»
Раздел 11 «Перпендикулярность прямых и плоскостей»
Раздел 12 «Декартовы координаты»
Раздел 13 «Многогранники, объем многогранников»
Раздел 14 «Тела вращения, объем тел вращения, площади поверхности тел вращения»
Основной формой учебного процесса является индивидуальная самостоятельная работа с учебной литературой
Изучать дисциплину математика необходимо в логической последовательности:
1. Усвоить учебные материалы , согласно программы.
2. Составить ответы на вопросы для самоконтроля.
3. Выполнить контрольную работу.
4. Сдать промежуточную аттестацию в виде экзамена.
Все непонятные вопросы студент может выяснить в индивидуальной консультации у преподавателя.
В соответствии с учебным планом студент должен в семестре выполнить одну контрольную работу , которая охватывает все разделы семестра , промежуточная аттестация в виде экзамена. Для проведения промежуточной аттестации по дисциплине математика составлены экзаменационные тесты , которые охватывают раздел материала за 1 семестр обучения. Экзамен по математике проводится на ПВЭМ. Контрольная работа выполняется в отдельной тетради. Содержание каждого вопроса и условие задачи необходимо переписывать полностью, из задания непосредственно перед ответом. Ответы должны быть полными , конкретными, по существу заданного вопроса. Решение задач должны быть подробно расписаны с пояснением . ответами и выводами. Доказательство теорем должно быть оформлено подробно , выделены разделы : что дано, что доказать , чертеж к теореме и доказательство самой теоремы с пояснением ( т.е. объяснение всех пунктов доказательства ).
РАЗДЕЛ 1 ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА
Студент должен :
Знать:
· Определение действительного числа
· Способы решений линейных уравнений и неравенств
· Способы решений квадратных уравнений и неравенств
Уметь:
· Выполнять арифметические действия на множестве действительных чисел
· Решать линейные и квадратные уравнения
· Решать линейные и квадратные неравенства
· Решать системы линейных уравнений и неравенств
· Решать простейшие иррациональные уравнения
РАЗДЕЛ 2 ТРИГОНОМЕТРИЧЕСКИЕ ВЫРАЖЕНИЯ
Студент должен :
Знать:
· определение радиана, формулы перевода градусной меры угла в радианную и обратно; определение синуса, косинуса, тангенса и котангенса числа; основные формулы тригонометрии; свойства и графики тригонометрических функций; понятия обратных тригонометрических функций; способы решения простейших тригонометрических уравнений и неравенств.
Уметь :
· вычислять значения тригонометрических функций с заданной степенью точности; преобразовывать тригонометрические выражения, используя тригонометрические формулы; строить графики тригонометрических функций и на них иллюстрировать свойства функции;
· применять геометрические преобразования (сдвиг и деформацию) при построении графиков; решать простейшие тригонометрические уравнения и неравенства, а также несложные уравнения, сводящиеся к простейшим с помощью тригонометрических формул.
РАЗДЕЛ 3 ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ
Студент должен :
Знать:
· определение радиана, формулы перевода градусной меры угла в радианную и обратно; определение синуса, косинуса, тангенса и котангенса числа; основные формулы тригонометрии; свойства и графики тригонометрических функций; понятия обратных тригонометрических функций; способы решения простейших тригонометрических уравнений и неравенств.
Уметь :
· вычислять значения тригонометрических функций с заданной степенью точности; преобразовывать тригонометрические выражения, используя тригонометрические формулы; строить графики тригонометрических функций и на них иллюстрировать свойства функции;
· применять геометрические преобразования (сдвиг и деформацию) при построении графиков; решать простейшие тригонометрические уравнения и неравенства, а также несложные уравнения, сводящиеся к простейшим с помощью тригонометрических формул.
РАЗДЕЛ 4 ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ
Студент должен :
Знать:
· понятия обратных тригонометрических функций; способы решения простейших тригонометрических уравнений и неравенств
Уметь :
· решать простейшие тригонометрические уравнения и неравенства, а также несложные уравнения, сводящиеся к простейшим с помощью тригонометрических формул.
РАЗДЕЛ 5 ПОКАЗАТЕЛЬНАЯ,ЛОГАРИФМИТИЧЕСКАЯ И СТЕПЕННАЯ ФУНКЦИИ
Студент должен :
Знать:
· понятие степени с действительным показателем и ее свойства; определение логарифма числа, свойства логарифмов; свойства и графики показательной, логарифмической и степенной функции; способы решения простейших показательных и логарифмических уравнений и неравенств;
Уметь :
· строить графики показательных, логарифмических функций при различных основаниях и на них иллюстрировать свойства функций; преобразовывать эти графики путем сдвига и деформации; вычислять значения показательных и логарифмических выражений с помощью основных тождеств
РАЗДЕЛ 6 АКСИОМЫ СТЕРЕОМЕТРИИ И ИХ ПРОСТЕЙШИЕ СВОЙСТВА
Студент должен :
Знать :
· основные понятия стереометрии; аксиомы стереометрии и следствия из них
Уметь :
· в ходе решения задач проводить доказательные рассуждения , ссылаясь на аксиомы
РАЗДЕЛ 7 ПАРАЛЛЕЛЬНОСТЬ ПРЯМЫХ И ПЛОСКОСТЕЙ
Студент должен :
Знать :
· взаимное расположение прямых, прямой и плоскости, двух плоскостей в пространстве; основные теоремы о параллельности прямой к плоскости, параллельности двух плоскостей; свойства параллельного проектирования и их применение для изображения фигур в стереометрии;
Уметь :
· устанавливать в пространстве параллельность прямых, прямой и плоскости, двух плоскостей, используя признаки и основные теоремы о параллельности;
РАЗДЕЛ 8 ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ И ПЛОСКОСТЕЙ В ПРОСТРАНСТВЕ
Студент должен :
Знать :
· понятие угла между прямыми, угла между прямой и плоскостью, двугранного угла, угла между плоскостями; основные теоремы о перпендикулярности прямой и плоскости, перпендикулярности двух плоскостей;
Уметь :
· применять признак перпендикулярности прямой и плоскости,
· теорему о трех перпендикулярах, признак перпендикулярности плоскостей для вычисления углов и расстояний в пространстве.
РАЗДЕЛ 9 ПРОИЗВОДНАЯ ФУНКЦИЯ В ТОЧКЕ
Студент должен :
Знать :
· определение производной, ее геометрический и механический смысл; правила и формулы дифференцирования функции; определение дифференциала функции; определение второй производной, ее физический смысл;