Смекни!
smekni.com

Нормативный срок освоения программы 4 года фгос впо утвержден приказом Минобрнауки России от 21. 12. 2009 №745, зарегистрирован в Министерстве юстиции РФ 03. 02. 2010 №16217 Санкт-Петербург (стр. 6 из 8)


1.3.06 Дисциплина Б3.В.06 Квантовая и оптическая электроника

Общая трудоёмкость изучения дисциплины составляет 2 зач. ед. (78 часов)

1. Цели и задачи дисциплины.

Цель дисциплины – формирование у студентов таких компетенций, которые были бы достаточны для дальнейшей их самостоятельной работы в области квантовой и оптической электроники, для самостоятельного анализа процессов в существующих приборах квантовой и оптической электроники и для прогнозирования этих процессов при создании новых типов приборов. В данной дисциплине основное внимание сосредоточено на изучении фундаментальных физических принципов, лежащих в основе современных приборов квантовой электроники, на изложении классических и современных достижений теории лазеров. Анализируются научные и технические достижения, реализованные в различных типах лазеров.

Задачи изучения курса: научить студентов использовать полученные знания при расчете основных характеристик приборов, конструировании их модификаций и использовании приборов в разных областях науки и техники, напомнить о важной роли российских ученых в становлении и развитии квантовой и оптоэлектроники, научить студентов детальному анализу сложных физико-технических систем, начиная от основных физических принципов, лежащих в основе их работы, а также показать студентам, как можно успешно применить на практике результаты изученных ими ранее фундаментальных теоретических дисциплин, доказать им ценность и необходимость глубоких знаний этих дисциплин, сформировать понимание единства и неразрывности фундаментальных естественных наук и современных технических и технологических достижений.

2. Место дисциплины в системе дисциплин учебного плана

Для студентов профиля «Физика и техника полупроводников» направления подготовки бакалавров 223200 «Техническая физика» дисциплина Б3.В.06 «Квантовая и оптическая электроника» входит в вариативную часть профессионального цикла ООП. Дисциплина читается в 8-м семестре и опирается на знания, полученные при изучении предшествующих курсов «Математика», «Физика», «Теоретическая физика», «Физика твердого тела и полупроводников», «теория оптико-электронных приборов». Знания, полученные студентами при изучении настоящего курса, используются в дальнейшем при прохождении семинаров и лабораторий по НИР, выполнении выпускных работ.

3. Основные дидактические единицы (разделы)

Разделы дисциплины по РПД

Объем занятий, час

Л

ПЗ

СР

1

Введение в оптическую квантовую электронику

2

0

0

2

Взаимодействие излучения с веществом

7

2

4

3

Оптические резонаторы

6

2

4

Режимы работы лазеров

6

2

4

4

Управление параметрами лазерного излучения

6

2

4

5

Инжекционные лазеры на гомо- и гетеропереходах

6

2

4

6

Лазеры с распределенной обратной связью

6

3

6

Общая трудоемкость 78 час

39

13

26

В результате изучения дисциплины студенты должны:

знать:

- физические основы оптической квантовой электроники;

- принципы конструирования различных классов полупроводниковых гомо- и гетеролазеров и систем на их основе;

- особенности практического использования лазерного излучения в различных областях науки и техники;

уметь:

- применять на практике лазеры и светодиоды как самостоятельные приборы и как элементы различных систем.

- критически оценивать достоинства, недостатки и области возможного применения новых научных и технических разработок, реализованных в различных полупроводниковых лазеров;

- выполнять критический анализ результатов исследований в области квантовой электроники;

- оценивать практическую реализуемость лазера с предъявляемыми техническими параметрами;

- использовать основные принципы математического моделирования лазеров, необходимые для создания новых типов этих приборов;

иметь навыки:

- анализа и оптимизации большого комплекса факторов, влияющих на работу современных приборов квантовой электроники;

- устных сообщений о результатах проведенного анализа и участия в научной дискуссии;

иметь представление

- об основных физических принципах работы лазеров, о комплексном подходе к изучению сложных систем.

4. Объем дисциплины по видам учебной работы и формы контроля

Виды занятий и формы контроля

Объем по семестрам

8-й семестр

Лекции, ч/нед

2

Практические занятия, ч/нед

1

Самостоятельные занятия, ч/нед

2

Экзамены, шт/сем

1

Общая трудоемкость дисциплины составляет 78 часов.


1.3.07 Дисциплина Б3.В.07 Микро-и оптоэлектроника

Общая трудоёмкость изучения дисциплины составляет 2 зач. ед. (78 часов)

I. Цели и задачи изучения дисциплины

Целью изучения дисциплины является формирование у студента профессиональных компетенций в области микро- и оптоэлектроники, способствующих социальной мобильности, конкурентоспособности и устойчивости на отечественном и мировом рынке труда и основанных на усвоении современных представлений о физических основах процессов и методов, используемых в нанотехнологии и о свойствах и типах наноразмерных обектов микро- и оптоэлектроники.

2. Место дисциплины в системе дисциплин учебного плана

Для студентов профиля «Физика и техника полупроводников» направления подготовки бакалавров 223200 «Техническая физика» дисциплина Б3.В.07 «Микро- и оптоэлектроника» входит в вариативную часть профессионального цикла ООП

Дисциплина читается в 8-м семестре и опирается на знания, полученные при изучении предшествующих курсов «Электронные приборы», «Материаловедение и технология конструкционных материалов», «Физика твердого тела и полупроводников». Результаты изучения дисциплины необходимы для самостоятельной научно-исследовательской работы и подготовки выпускной работы бакалавра технической физики, а также для быстрой адаптации в первичной должности выпускника, работающего в области современных наукоемких технологий, и для его дальнейшего профессионального роста.

3. Основные дидактические единицы (разделы)

Разделы дисциплины по РПД

Объем занятий, час

Л

ПЗ

СР

1

Введение. Типы ИС.

1

1

1

2

Физико-технологические основы микроэлектроники

6

3

6

3

Базовые операции микро- и оптоэлектроники, тенденции и перспективы их совершенствования

8

2

3

4

Технологические возможности масштабирования МОП-структур.

4

2

4

5

Тонкопленочные технологии

3

2

4

6

Развитие технологии межэлементных соединений и упаковки ИС

2

0

0

7

Биполярные и МОП структуры с субмикронными размерами

3

2

4

8

Интегральные схемы на А3Б5

6

0

2

9

Функциональная микроэлектроника

4

1

2

10

Органическая микроэлектроника

2

0

0

Общая трудоемкость 78 час

39

13

26

В результате изучения дисциплины студенты должны:

знать:

- перспективы и направления развития микроэлектроники, технологические и физические ограничения степени интеграции микросхем.