Мышечные пучки формируют брюшко, переходящее в сухожильную часть. Проксимальный отдел мышцы — ее головки — начинается от одной кости, дистальный конец — сухожилие (хвост) — прикрепляется к другой кости. Начало мышцы находится проксимальнее, чем точка ее прикрепления, которая располагается дистальнее. Сухожилия различных мышц отличаются между собой Так, мышцы конечностей имеют узкие и длинные сухожилия. Широкое и плоское сухожилие — сухожильное растяжение, или апоневроз, характерно для мышц, участвующих в формировании стенок полостей тела. Брюшко некоторых мышц разделено промежуточным сухожилием, например, двубрюшная мышца. Если на протяжении мышцы имеется несколько промежуточных сухожилий, то их называют сухожильными перемычками. Сухожилие мало растяжимо, обладает значительной прочностью и выдерживает огромные нагрузки. Так, например, сухожилие четырехглавой мышцы бедра способно выдерживать растяжение силой в 600 кг, сухожилие трехглавой мышцы голени (пяточное сухожилие) — 400 кг. Это достигается благодаря строению плотной оформленной соединительной ткани, из которой образованы сухожилия. Сухожилия состоят из параллельных пучков коллагеновых волокон, между которыми расположены фиброциты и небольшое количество фибробластов. Сухожилие снаружи покрыто перитенонием — футляром из плотной волокнистой соединительной ткани. В соединительнотканных прослойках проходят сосуды и нервы.
Сухожилие в большинстве случаев имеется на обоих концах мышцы, но нередко у мускула (чаще у начала) наблюдается непосредственное присоединение (к кости или другому органу) мышечных волокон — так называемое мясистое начало. Иногда начало (или прикрепление) мускула неоднородно: частью сухожильное, частью мышечное.
Как правило, поперечнополосатые мышцы соединяют части скелета, обладающие известной подвижностью. Сокращаясь, мускул сближает кости, причем обыкновенно одна из них не меняет своего положения и потому место, где начинается мускул, получило название укрепленной точки, здесь же лежит начало мышцы. На другой кости, приводимой сокращением данной мышцы в движение, располагается подвижная точка; тут находится прикрепление мышцы. В общем у мышц туловища начало расположено ближе к срединной плоскости, прикрепление лежит дальше от нее, а у мышц конечностей начало находится проксимально, прикрепление – дистально.
1.3. Строение мышц
Мышечные волокна, параллельные друг друга, связаны между собой рыхлой соединительной тканью и образуют сначала так называемый первичный пучок (или пучок первого порядка). Несколько таких первичных пучков соединяются, в свою очередь, образуя вторичный пучок и т. д. Последние соединяются в более крупные пучки, из которых уже составляется мускул. Пучки всех категорий связываются между собой прослойками рыхлой соединительной ткани (эндомизий). Такого же строения тонкая оболочка, пери-мизий, покрывает весь мускул снаружи. Толщина мышечных пучков зависит от числа содержащихся в них волокон. Мышца соединяется с костью сухожилием, которое тесно связано с эндомизием и сарколеммой и состоит из плотной волокнистой соединительной ткани; пучки последней, располагаясь параллельно, объединены очень тонкими прослойками рыхлой клетчатки, где проходят многочисленные сосуды.
Мускулы — органы с весьма интенсивным обменом веществ, они очень богаты сосудами и нервами. Чаще один и тот же мускул получает кровь из нескольких артерий (каждая сопровождается двумя венами), которые, разветвляясь в ткани мускула, проходят по прослойкам эндомизия и анастомозируют друг с другом, образуя петли, вытянутые по длине мышечных пучков. Мускулы снабжаются чувствительными и двигательными нервами; последние своими окончаниями (двигательные бляшки) соединяются с сократительным веществом мускульных волокон. Окончания чувствительных нервов (нервномышечные веретена) имеются в мышечных элементах и в ткани сухожилий.
Поперечнополосатые мышцы теснейшим образом (анатомически и физиологически) связаны со скелетом, образуя вместе с ним систему органов опоры и движения.
1.4. Механическое действие мышц
Механическое действие мышцы (мышц) проявляется в сокращении. Сокращаясь, мышца становится короче и толще, сближая точки прикрепления, развивая при этом силу. Редко мышца сокращается одна, даже простые движения различных частей тела обычно обусловлены работой нескольких мышц. Часто мышца соединяет смежные кости, образующие одно сочленение — сустав.
Мышцы — это «машины», преобразующие химическую энергию непосредственно в механическую (работу) и в теплоту. Деятельность их, в частности, механизм укорочения и генерирования силы, убедительно доказан на молекулярном уровне с использованием физических и химических законов.
Механика мышечного сокращения. Механическому сокращению мышцы предшествует ее электрическое возбуждение, вызываемое разрядом двигательных нейронов в области нервно-мышечного соединения (двигательной концевой пластинки), т. е. в месте контакта нерва и мышцы. Здесь высвобождается медиатор ацетилхолин, который взаимодействует с постсинаптической мембраной и вызывает электрическое возбуждение мышцы — потенциал действия. Под влиянием потенциала действия высвобождается кальций, запускающий механическое сокращение.
Реакция мышцы на раздражение. На одиночный стимул мышца отвечает одиночным сокращением. Раздражение, наносимое на мышцу, характеризуется следующими параметрами: 1) интенсивностью (В или мВ), 2) длительностью (силы мс), 3) частотой (имп/с). Длительность единичного мышечного сокращения составляет примерно 0,1 с. Электрический ответ мышцы на раздражение (потенциал действия) характеризуется периодом рефракторности, когда мышца не отвечает на раздражение; в механическом же сокращении скелетной мышцы такого периода нет. Поэтому если на мышцу наносить повторное раздражение в тот момент, когда она еще не полностью расслабилась после предшествующего сокращения, можно наблюдать усилие сокращения, или суммацию. Напряжение, или усилие, развиваемое при суммации, больше, чем при одиночном сокращении.
Молекулярный механизм сокращения. Один грамм ткани скелетной мышцы содержит примерно 100 мг «сократительных белков» — актина (молекулярная масса 42 000) и миозина (молекулярная масса 50 000). Механизм их взаимодействия во время акта мышечного сокращения объясняет теория скользящих нитей, разработанная X. Хаксли и Дж. Хансон (1954).
Теория скользящих нитей. Сократительные белки актин и миозин образуют в миофибрилах тонкие и толстые миофиламенты. Они располагаются параллельно друг другу внутри мышечной клетки.
Миофибриллы представляют собой сократимые пучки «нитей» (филаментов) диаметром около 1 мкм. Перегородки, называемые Z-пластинками, разделяют их на несколько компартментов — саркомеров — длиной примерно по 2,5 мкм.
Мышца сокращается в результате укорочения множества последовательно соединенных саркомеров в миофибрилах. Сравнивая структуры саркомера в двух различных функциональных состояниях, можно видеть изменения поперечной исчерченности и взаиморасположения нитей во время сокращения: тонкие актиновые филаменты скользят вдоль толстых миозиновых, двигаясь между ними к середине их пучка и саркомера.
Длина нитей не меняется и при растяжении мышцы. Тонкие филаменты попросту вытягиваются из промежутков между толстыми нитями, так что степень перекрывания их пучков уменьшается.
1.5. Мышечное сокращение
У человека существует три вида мышц: поперечнополосатые мышцы скелета, поперечнополосатые мышцы сердца и гладкие мышцы внутренних органов, сосудов и кожи. Все они различаются по строению и физиологическим свойствам.
Функции и свойства поперечнополосатых мышц. Поперечнополосатые мышцы являются активной частью ОДА, включающего, кроме них кости, связки и сухожилия. В результате сократительной деятельности поперечнополосатых мышц, происходящей под влиянием импульсов, приходящих из ЦНС, возможны: 1) передвижение организма в пространстве; 2) перемещение частей тела относительно друг друга; 3) поддержание позы. Кроме того, одним из результатов мышечного сокращения является выработка тепла, так как при работе мышц освобождается большое его количество.
Каждое мышечное волокно обладает следующими тремя физиологическими свойствами: 1) возбудимостью, т. е. способностью отвечать на действие раздражителя генерацией потенциала действия; 2) способностью проводить волну возбуждения вдоль всего волокна в обе стороны от точки раздражения; 3) сократимостью, т. е. способностью сокращаться или изменять напряжение при возбуждении.
Возбудимость и способность к проведению потенциала действия является функциями поверхностной клеточной мембраны — сарколеммы — мышечного волокна, а сократимость — миофибрилл, расположенных в его саркоплазме.
Изотоническое и изометрическое сокращение. Распространение потенциала действия по мышечному волокну активизирует его сократительный аппарат, вследствие чего волокно сокращается. В зависимости от условий, в которых происходит сокращениё различают два его типа: изотоническое и изометрическое.