Смекни!
smekni.com

Методические указания к изучению дисциплины введение (стр. 2 из 7)

В связи с тем, что сложные системы работают в условиях действия случайных факторов, значения функционалов оказываются случайными величинами. Это создает некоторые сложности и поэтому при выборе показателя эффективности пользуются средними значениями соответствующих функционалов. Примерами таких средних значений функционалов служат средние количества изделий, выпускаемых за смену, средняя себестоимость продукции, средняя прибыль (для производственных процессов), средняя длительность поездки, средняя стоимость перевозки (для транспорта), среднее время ожидания в очереди (для систем массового обслуживания).

Иногда в качестве показателя эффективности используются вероятности некоторых случайных событий, например вероятность успешной посадки самолета (для системы слепой посадки), вероятность застать абонентскую линию занятой (для систем телефонной связи), вероятность попасть в очередной автобус (для пассажира, находящегося в очереди).

Модель (лат. modulus – мера) является представлением объекта, системы или понятия (идеи) в некоторой форме, отличной от формы их реального существования. Модель обычно служит средством, помогающим в объяснении, понимании или совершенствовании системы. Можно ознакомиться с несколькими определениями этого понятия, приведенными различными авторами.

Модель – это используемый для предсказания и сравнения инструмент, позволяющий логическим путем спрогнозировать последствия альтернативных действий и достаточно уверенно указать, какому из них отдать предпочтение.

Модель – это некоторое представление о системе, отражающее наиболее существенные закономерности ее структуры и процесса функционирования и зафиксированное на некотором языке или в некоторой форме.

Модель – это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием. Это один из наиболее распространенных способов изучения различных процессов и явлений.

Существует много подходов к классификации методов и приемов моделирования, но основным является подразделение на физическое и математическое моделирование.

При физическом моделировании модель воспроизводит изучаемый процесс (оригинал) с сохранением его физической природы и поэтому, конечно, имеет ограниченное применение.

Математическое моделирование - это способ исследования различных процессов путем изучения явлений, имеющих различное физическое содержание, но описываемых одинаковыми математическими соотношениями.

Под математической моделью реальной системы понимают совокупность соотношений (например, формул, уравнений, неравенств, логических условий, операторов), определяющих характеристики состояний системы (а через них и выходные сигналы) в зависимости от параметров системы, входных сигналов, начальных условий и времени.

Можно перечислить следующие основные способы использования (исследования) математической модели:

- Аналитическое исследование процессов.

- Исследование процессов при помощи численных методов.

- Моделирование процессов на ЭВМ.

Конечно, первые два подхода в настоящее время немыслимы без реализации всего процесса или некоторых его элементов на компьютерах. Но всё же есть потребность в выделении третьего подхода в самостоятельное направление.

Методы, изучаемые в данном курсе, относятся ко всем трём направлениям. Аналитическому исследованию посвящено аналитическое моделирование (тема 1.1.3 рабочей программы). Исследовать процессы при помощи численных методов предлагается студенту при изучении имитационного моделирования (тема 1.1.2) тем более, что этот подход является разновидностью численных методов решения задач. И при освоении методики нечеткого моделирования (тема 1.1.4) осуществляется именно моделирование на ЭВМ, так как без компьютера оно нереализуемо. При этом в различных темах возможно использование следующих программных средств: MAPLE, MATLAB, GPSS, CubiCalc, FuziCalc, FIDE.

Вопросы для самопроверки

1. Какие цели преследует моделирование?

2. Дайте определение математической модели.

3. Опишите методику составления моделирующего алгоритма.

1.2. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ

Метод имитационного моделирования является принципиально новым численным методом решения задач, который не накладывает никаких ограничений на сложность задачи и позволяет учитывать в модели любое число cущecтвенных факторов. Поэтому данный метод – практически единственный приемлемый метод получения численного решения тех задач, которые трудно сформулировать аналитически. Суть этого метода заключается в том, что операция, исход которой определяется случайными факторами, представляет собой случайный процесс. Приближенное значение его вероятных характеристик может быть найдено путем проведения натурного эксперимента с последующей статистической обработкой результатов отдельных наблюдений, для чего данная операция должна быть проведена многократно в заданных фиксированных условиях. Каждое наблюдение является реализацией случайного процесса, а отдельный результат наблюдения - случайной величиной, подчиненной тому закону распределения, который и отыскивается при проведении эксперимента.

Методом имитационного моделирования могут быть решены вероятностные задачи любой сложности, если известны вероятностные характеристики параметров исследуемого процесса и их взаимосвязи. Практическим ограничением может являться только требование очень высокой точности результата, так как последнее связано с получением статистической выборки большого объема, что потребует выполнения большого числа реализаций процесса. Время выполнения каждой реализации в значительной степени определяется способом формирования случайных чисел, которые используются как случайные параметры реального процесса. Рациональные способы получения таких чисел обеспечивают решение методом имитационного моделирования задач большой сложности, в том числе задач моделирования процесса функционирования сложных систем управления.

При моделировании сложных систем для удовлетворения требований точности проводится большое количество испытаний, что сопряжено со значительными затратами машинного времени для хранения информации о состояниях системы, усложняет последующую обработку и анализ результатов. Отсюда следует необходимость такой организации вычислительного процесса, при которой оценки интересующих параметров могли бы быть получены в ходе моделирования и не требовали бы сохранения и последующей переработки больших объемов данных.

Следует помнить, что значительное количество операций расходуется на действия со случайными числами. Поэтому с уверенностью можно сказать, что наличие простых и экономных способов формирования последовательностей случайных чисел во многом определяется возможностью практического применения этого метода. В качестве исходной совокупности случайных чисел, используемых для образования случайных элементов различной природы (таких, как случайные события, случайные величины и случайные процессы), необходимо выбирать такую совокупность, которая может быть получена с наименьшими, по возможности, затратами машинного времени и, кроме того, обеспечивает простоту и удобство дальнейших преобразований. Считается, что этим требованиям удовлетворяет совокупность случайных чисел с равномерным распределением в интервале (0, 1). Наибольшее распространение получили так называемые программные генераторы этих случайных чисел, реализуемые на ЭВМ при помощи специальных программ. Разработаны специальные тесты, позволяющие осуществить статистический анализ качества последовательности случайных чисел и выявить те или иные отклонения. На этом пути проводится сравнительная оценка способов формирования случайных чисел и выбираются для практического использования наиболее точные и экономичные способы.

Студенту следует обратить внимание на то, что существуют два основных пути преобразования случайных величин, имеющих равномерное распространение в интервале (0, 1), в возможные значения случайных величин, закон распределения которых задан. Один из них — так называемый прямой — состоит в реализации некоторой операции, формирующей число уi над числом хi имеющим (точно или приближенно) заданный закон распределения. Другой основывается на моделировании условий соответствующей предельной теоремы теории вероятностей.

Кроме того, при изучении данной темы необходимо особое внимание уделить структуре моделирующих алгоритмов одно- и многоканальных СМО, освоить методику моделирования СМО на ЭВМ. Необходимо учесть, что наличие имитационной модели, реализованной на ЭВМ, позволяет провести интересные в теоретическом и практическом отношении исследования СМО. В первую очередь очевидны пути решения ряда задач анализа системы. К ним относятся определения показателей эффективности, надежности, помехоустойчивости и другие свойства системы по известным ее параметрам: интенсивности потока требований, количеству каналов и их характеристикам, времени обслуживания и т. д.