Смекни!
smekni.com

Методические указания по выполнению лабораторных работ по курсу “физические основы получения информации” Часть (стр. 5 из 6)

5. ОБЪЕКТЫ ИССЛЕДОВАНИЯ И СРЕДСТВА ИЗМЕРЕНИЯ.

Объектами исследований являются три одинаковые по размерам полоски из разного металла (сталь, дюраль, медь), две одинаковые по размерам дюралевые пластинки с разным состоянием поверхности (полированная и черненая), дюралевая пластина большего размера с черненой поверхностью. В качестве нагревателя используется транзистор КТ818В. Для измерения температуры используется электронный преобразователь температура - напряжение, в котором в качестве чувствительных элементов используются диоды КД210. Преобразователь конструктивно выполнен в отдельном корпусе с выносными термочувствительными элементами. Питание преобразователя осуществляется с коммутационно - измерительной панели (КИП). Кабель питания подключается к разъему КИП “Внешнее устройство”. На этой же панели расположены переключатель и амперметр для регулирования и измерения тока нагревателя I. Измерение напряжения нагревателя U, а также выходных напряжений электронного блока, пропорциональных температурам чувствительных элементов (гнезда “ t1 - ^” и “ t2 - ^”), осуществляется с помощью вольтметра В7-16 (В7-16А). Крепление нагревателя и термочувствительных элементов на объектах исследования осуществляется с помощью имеющихся на последних пружинных зажимов. Для создания высокого градиента температуры при исследовании тепловой проводимости металлических полосок используется радиатор с зажимом для крепления полоски. Для устранения паразитных тепловых потоков при измерении тепловых потоков теплопроводности и лучеиспускания используются пенопластовые теплоизолирующие кожухи. При исследовании теплообмена посредством конвекции используется вентилятор, скорость воздушного потока которого регулируется путем изменения площади сечения всасывающих отверстий специальными шторками. Шкала угла поворота регулирующих шторок отградуирована в единицах скорости создаваемого вентилятором воздушного потока. Крепление объектов исследования осуществляется на специальных кронштейнах с помощью пружинных зажимов.

6. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ.

6.1. Для определения значений теплопроводности и коэффициента теплопроводности материала металлической полоски используется схема рис. 1а. Согласно выражению (3) теплопроводность участка образца между двумя его сечениями может быть определена следующим образом:

, (10)

здесь qт - тепловой поток теплопроводности через сечения образца; Dq - разность температур в первом и втором сечениях.

Тепловой поток теплопроводности через металлическую полоску может быть создан с помощью нагрева одного конца полоски нагревателем и охлаждения другого конца полоски с помощью радиатора за счет естественной конвекции. Для исключения паразитных тепловых потоков объект исследования помещается в теплоизолирующий пенопластовый кожух. Благодаря этому можно условно принять, что при установившемся тепловом режиме весь тепловой поток qвн, создаваемый нагревателем, передается радиатору за счет теплового потока теплопроводности металлической полоски:

qт = qвн. (11)


Подводимый к объекту тепловой поток qвн равен мощности нагревателя и может быть определен путем измерения по схеме рис. 1 тока I и напряжения U нагревателя:

qт = qвн = I U. (12)

При проведении данного эксперимента на нагреватель подается максимальная мощность. Температуры сечений образца могут быть измерены с помощью электронного термометра, выходные напряжения которого прямопропорциональны температурам его термочувствительных элементов:

q°= S Uвых, (13)

где q°- температура в градусах Цельсия;

S - чувствительность преобразования, равная 100 град / В;

Uвых - выходное напряжение электронного термометра, В.

Следует обратить особое внимание на то обстоятельство, что используемое в расчетах соотношение (11) справедливо только в случае установившегося температурного режима (при отсутствии теплового потока изменения теплосодержания тела). В соответствии с этим следует, учитывая инерционность теплового процесса (t » 3 мин), проводить измерение разности температур Dq не ранее 15 мин. после включения нагревателя. Значение теплопроводности gт участка пластин между центрами чувствительных элементов определяется по формуле (10), а коэффициент теплопроводности l - из соотношения (4) при известных значениях геометрических параметров металлической полоски: S = 12 мм2; l = 45 мм.

6.2. Для определения экспериментальной зависимости проводимости теплоотдачи путем конвекции от скорости воздушного потока используется электрическая схема рис. 1. Объектом исследования в этом случае является металлическая пластинка из полированного дюраля. Пластинка с закрепленными на ней нагревателем и термочувствительным элементом устанавливается на кронштейне вентилятора. Второй термочувствительный элемент крепится на пластинке из черненого дюраля и служит для измерения температуры окружающей среды. Согласно выражению (5) проводимость теплоотдачи путем конвекции может быть определена по формуле:

gк =

. (14)

В данном случае при установившейся температуре пластинки (отсутствии теплового потока изменения теплосодержания) можно принять, что практически весь подводимый к пластинке тепловой поток нагревателя расходуется на теплообмен с окружающей средой путем конвекции:

qк = qвн = I U. (15)

Другими составляющими теплообмена ввиду крепления пластинки на теплоизолирующем кронштейне, относительно низкой ее температуры и полированной поверхности в данном случае можно пренебречь.

Как и в предыдущем случае на нагреватель подается максимальная мощность. Первое измерение температур нагреваемой пластинки и окружающей среды производится при скорости воздушного потока равной нулю (естественная конвекция). Следует учесть, что ввиду тепловой инерции стационарный тепловой режим устанавливается в данном случае через 12 минут после включения нагревателя.

Следующие измерения разности температур производятся для значений скорости V воздушного потока 0.3; 0.4; ..., 1.0 м /с через 2 минуты после изменения скорости.

На основе полученных данных строится зависимость gк(V) в диапазоне скоростей 0 ... 1 м/с.

6.3. Измерение проводимости теплоотдачи путем лучеиспускания осуществляется с использованием электрической схемы рис.1. Объектами исследования в этом случае являются дюралевые пластинки с полированной и черненой поверхностями. При проведении эксперимента на одной из этих пластинок закрепляются нагреватель и чувствительный элемент. Второй термочувствительный элемент устанавливается на массивную дюралевую пластину большего размера (в дальнейшем основание), с которой и осуществляется теплообмен лучеиспусканием. Исследуемая пластинка помещается в теплоизолирующий кожух, уменьшающий паразитные тепловые потоки. Теплообмен с основанием осуществляется через отверстие в нижней части кожуха.

Согласно выражению (6) проводимость теплоотдачи путем лучеиспускания может быть определена по формуле:

gл =

, (16)

здесь Dq - разность температур пластинки и основания.

При установившемся тепловом режиме (отсутствии теплового потока изменения теплосодержания) можно принять, что основная часть теплового потока теплоотдачи пластинки обусловлена теплообменом нагреваемой исследуемой пластинки и основания путем лучеиспускания. И соответственно:

qл = qвн = I U. (17)

Значения тока и напряжения нагревателя выбираются в данном случае порядка 1.4 А и 1.4 В (восьмое положение переключателя установки тока).

Измерение температур пластинки и основания для определения разности их температур Dq с учетом тепловой инерции производится не ранее 15 минут после включения нагревателя. После проведения экспериментов с полированной и черненой пластинками определяется соотношение тепловых проводимостей в том и другом случаях.

6.4. Значения показателя тепловой инерции при разных скоростях воздушного потока, обуславливающего теплообмен конвекцией, могут быть определены путем анализа кривой переходного процесса изменения температуры объекта при скачкообразном изменении температуры окружающей среды или теплового потока, подводимого к объекту нагревателем. В нашем случае удобнее использовать второе. При проведении эксперимента используются те же электрическая схема, объект исследования и дополнительное оборудование, что и в разделе 6.2. Методика проведения эксперимента по определению теплового переходного процесса заключается в следующем. На кронштейн вентилятора устанавливается полированная дюралевая пластинка с нагревателем и термочувствительным элементом. Черненая пластинка с другим термочувствительным элементом размещается вблизи вентилятора. При выключенном вентиляторе осуществляется нагрев пластинки в течении 15 минут до установившегося значения температуры. Режим нагрева: I » 1.4 А; U » 1.4 В (восьмое положение переключателя установки тока). Далее устанавливается фиксированная скорость воздушного потока и снимается кривая изменения температуры пластинки q°т(t). Значения времени, в которые производятся измерения, удобно брать равными 0; 1; 2; ..., 15 мин. Значение показателя тепловой инерции t может быть определено на основе полученной зависимости q°т(t) двумя способами.