ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение высшего
профессионального образования
«ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
УТВЕРЖДАЮ
Зав. кафедрой ММС
Академик РАН
_____________ В.Е. Панин
“____”________2006 г.
ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ МАТЕРИАЛОВ
Методические указания по выполнению лабораторных работ по курсу
«Механические и физические свойства материалов» для студентов направления
150600 – Материаловедение и технологии новых материалов
Томск 2006
УДК 669.621.785; 620.22
Определение плотности материалов: Методическое указание по выполнению лабораторных работ по курсу «Механические и физические свойства материалов» для студентов направления 150600 – Материаловедение и технологии новых материалов. –Томск: Изд. ТПУ, 2006. – 8 с.
Составитель: доц., канд. техн. наук С.В. Матренин
Рецензент: доц., канд. ф-м. наук Б.С. Зенин
Методические указания рассмотрены и рекомендованы к изданию методическим семинаром кафедры ММС “___”_________2006 г.
Зав. кафедрой ММС
академик РАН _____________ В.Е. Панин
©Матренин
©Matrenin
©Томский политехнический университет
Цель работы: научиться определять плотность различных материалов путем измерения линейных размеров образцов и методом гидростатического взвешивания.
Оборудование и материалы: весы лабораторные с погрешностью взвешивания не более 0,001 г, приспособление для гидростатического взвешивания, штангенциркуль, микрометр, мерный стакан, пикнометр, пинцет, образцы различных материалов (по указанию преподавателя), вода дистиллированная, спирт, парафин.
Краткое теоретическое введение
Плотность – очень важная характеристика материалов самого различного назначения. В случае, когда химический, либо фазовый состав материала точно не известен, но известно, что он состоит из одного химического элемента, измеряя плотность данного материала можно установить его химический и фазовый состав. Если состав материала известен заранее, то путем измерения плотности определяется его пористость, от которой, в свою очередь, могут зависеть другие характеристики материала, в первую очередь механические. В керамической технологии и в технологии порошковой металлургии плотность материала определяется практически на всех технологических этапах и в значительной степени определяет эксплуатационные свойства изделия.
Если образец исследуемого материала имеет правильную геометрическую форму, то, определяя путем взвешивания массу и рассчитывая, используя линейные измерения, объем можно с достаточной точностью определить его плотность.
Однако в большинстве случаев определение объема тела путем измерения линейных размеров весьма затруднительно. В то же время он очень легко находится взвешиванием тела в воде. Этот факт лежит в основе метода определения плотности тел путем гидростатического взвешивания.
Гидростатическое взвешивание – метод измерения плотности жидкостей и твердых тел, основанный на законе Архимеда: на всякое тело, погруженное в жидкость (или газ), действует со стороны этой жидкости (газа) поддерживающая сила, равная весу вытесненной телом жидкости (газа), направленная вверх и приложенная к центру тяжести вытесненного объема. Поддерживающую силу называют также архимедовой, или гидростатической подъемной силой. Давление, действующее на погруженное в жидкость тело, увеличивается с глубиной погружения, поэтому сила давления жидкости на нижние элементы поверхности тела больше, чем на верхние. В результате сложения всех сил, действующих на каждый элемент поверхности, получится равнодействующая сила, направленная вверх. Это и есть поддерживающая сила. Если тело плотно лежит на дне, то давление жидкости только сильнее прижимает его ко дну.
Пусть P – вес тела произвольной формы, и p – вес этого же тела в жидкости. Тогда разность P – p есть потеря веса тела в жидкости. По закону Архимеда это потеря равна весу вытесненной жидкости. Если объем тела равен V, а плотность жидкости ρж, то справедливо равенство
(1)Таким образом, определив потерю веса тела в жидкости, можно рассчитать его объем.
Как известно, плотность тела рассчитывается по формуле
(2)где g =9,8 м/с2 – ускорение свободного падения.
Тогда из (1) и (2) плотность тела равна
(3)Из курса общей физики известно, что связь веса тела с его массой определяется формулой
(4)С учетом этого, формулу для определения плотности тела можно записать в виде
(5)где M – масса тела на воздухе, m – масса тела в жидкости.
Все материалы, полученные по керамической технологии или технологии порошковой металлургии, содержат поры. Их подразделяют на две группы:
· закрытые поры – не сообщающиеся с окружающей средой.
· открытые поры – сообщающиеся с окружающей средой.
В некоторых материалах пористость задается и формируется целенаправленно, например, в антифрикционных материалах, керамических фильтрах. В технологии других материалов, например, огнеупорных керамик, допускается определенная пористость, не влекущая за собой заметного снижения эксплуатационных свойств изделий. В технологии материалов конструкционного и инструментального назначения пористость является отрицательным фактором, поскольку она определяет уровень прочностных характеристик изделий.
Пористость и плотность материалов принято характеризовать следующими показателями:
1. Истинная (теоретическая) плотность rи, г/см3 – плотность беспористого материала.
2. Кажущаяся плотность rк, г/см3 – плотность материала, содержащего поры.
3. Относительная плотность rк/rи .
4. Истинная пористость Пи, – суммарный объем всех пор, выраженный в процентах или долях к общему объему материала.
5. Кажущаяся (открытая) пористость – объем открытых пор, заполняемых водой при кипячении, выраженный в процентах к общему объему материала.
Путем взвешивания, измерения линейных размеров и расчета объема образца материала всегда определяется только кажущаяся плотность rк. Если материал образца имеет минимальную пористость (менее 0,5%), то значение экспериментально определенной плотности можно считать за истинную (теоретическую) плотность rи. Образцы с предполагаемой пористостью более 0,5% перед взвешиванием в жидкости пропитывают расплавленным парафином или другим веществом, не растворимым в жидкости. Это делается с целью закрытия открытых пор. Плотность подготовленных таким образом образцов будет кажущейся rк.Порядок выполнения работы
1. Изучить в течение 15 мин методический материал, делая необходимые записи.
2. С помощью штангециркуля и микрометра измерить линейные размеры цилиндрических образцов материалов. Результаты занести в табл. 1.
3. Собрать приспособление для гидростатического взвешивания в соответствии с рис.1. Наполнить емкость для гидростатического взвешивания дистиллированной водой. Уравновесить весы на ноль шкалы.
4. Взвесить все образцы на весах на воздухе. Один образец цилиндрической формы с предполагаемой высокой пористостью (спеченный) пропитать расплавленным парафином. Для этого образец полностью погрузить в расплавленный парафин и выдержать в нем не менее 30 с до прекращения выделения пузырьков воздуха. Затем образец высушить на воздухе, очистить его поверхность от парафина и взвесить. Результаты занести в таблицу.
5. Взвесить в воде образцы с предполагаемой минимальной пористостью и образец, пропитанный парафином. Данные занести в табл. 1.
6. Все измерения выполнить по 3 раза.
Таблица 1
Результаты измерений образцов.
№ образца | Форма | Способ получения | Диаметр d, см | Высота h, см | Объем V, см3 | Масса на воздухе m1, г | Масса на воздухе пропитанного образца m2, г | Масса в воде m3, г | Плотность ρи, г/см3 | Плотность ρк, г/см3 |
1 | цил.* | литой | – | – | ||||||
2 | цил. | спеч. | – | |||||||
3 | непр.** | литой | – | – | – | – | – | |||
4 | непр. | литой | – | – | – | – | – | |||
5 | непр. | литой | – | – | – | – | – | |||
6 | непр. | литой | – | – | – | – | – |
Прим. *–цилиндрическая, **–неправильная