СОДЕРЖАНИЕ
Введение…………………………………………………………………………..…..3
Глава 1. Особенности восприятия и мышления в дошкольном возрасте….….…4
1.1. Формирование представлений о геометрических фигурах…………………..4
1.2. Формирование математических знаний………………………………11 Глава 2. Процесс формирования элементарных математических
представлений…………………………………………………………....…….….16
2.1.Обучение счету до 10……………………………………………………..…...16
2.2. Счет с участием разных анализатoров. ……………………………………...19
Заключение………………………………………………………………………...25 Литература……………………………………………………………………..…...27
ВВЕДЕНИЕ
В дошкольном возрасте начинают формироваться элементарные математические представления. От того, насколько успешно будет организовано первое восприятие количественных отношений и пространственных форм реальных предметов, зависит дальнейшее математическое развитие детей.
Современная математика при обосновании таких важнейших понятий, как «число», «геометрическая фигура» и т. д., опирается на теорию множеств. Поэтому формирование понятий в школьном курсе математики происходит на теоретико-множественной основе.
Актуальность темы обусловлена тем, что выполнение детьми дошкольного возраста различных операций с предметными множествами и геометрическими фигурами позволяет в дальнейшем развить у малышей понимание количественных отношений и сформировать понятие о натуральном числе.
Задачи работы:
1. Изучить литературу по обозначенной тематике.
2. Проанализировать математические способности дошкольного возраста.
3. Рассмотреть процесс ознакомления младших дошкольников с плоскостными геометрическими фигурами.
4. рассмотреть формирование счета до 10.
При написании работы было проанализировано и использовано большое количество психолого-педагогической литературы.
Глава 1. Особенности восприятия и мышления в дошкольном возрасте
1.1. Формирование представлений о геометрических фигурах
Умение выделять качественные признаки предметов и объединять предметы в группу на основе одного общего для всех их признака - важное условие перехода от качественных наблюдений к количественным в младшем дошкольном возрасте.
Работу с малышами можно начинать с заданий на подбор и объединение предметов в группы по общему признаку («Отбери все синие кубики» и т п.) Пользуясь приемами наложения или приложения, дети в этом возрасте могут устанавливать наличие или отсутствие взаимно-однозначного соответствия между элементами групп предметов (множеств).[1]
Малышей данного возрастного периода не учат считать, но, организуя разнообразные действия с предметами, подводят к усвоению счета, создают возможности для формирования понятия о натуральном числе.
Дочисловой период обучения является пропедевтическим не только для обучения счету. Большое внимание в младшей группе уделяется упражнениям в сравнении предметов по длине, ширине, высоте, объему. Малыши получают первоначальное представление о величинах и их свойствах, их начинают знакомить с геометрическими фигурами, учат различать и называть круг, квадрат, треугольник, узнавать модели этих фигур, несмотря на различия в их окраске или размерах. Детей учат ориентироваться в пространственных направлениях (впереди, сзади, слева, справа), а также во' времени, правильно употреблять слова: утро, день, вечер, ночь.
Особенность младшего возраста определяется тем, что обучение детей младшей группы носит наглядно-действенный характер. Новые знания ребенок усваивает на основе непосредственного восприятия, когда следит за действием педагога, слушает его пояснения и указания и сам действует с дидактическим материалом.
Основная форма работы - обучение детей на занятиях. Занятия по математике проводят с начала учебного года, т. е. с 1 сентября. В сентябре занятия целесообразно проводить с подгруппами (по 6~8 человек), но при этом охватить всех детей данной возрастной группы. С октября в определенный день недели занимаются сразу со всеми детьми.
Для того чтобы занятия дали ожидаемый эффект, их надо правильно организовать. Новые знания даются детям постепенно, с учетом того, что они уже знают и умеют делать. Определяя объем работы, важно не допустить недооценки или переоценки возможностей детей, так как и то и другое неизбежно привело бы к бездействию их на занятии.
Прочное усвоение знаний обеспечивается неоднократным повторением однотипных упражнений, при этом меняется наглядный материал, варьируются приемы работы, так как однообразные действия быстро утомляют детей. Поддерживать активность предупреждать утомление детей позволяет смена характера их деятельности: дети слушают педагога, следя за его действиями, сами совершают какие-либо действия, участвуют в общей игре. Им предлагают не более 23 однородных заданий. На одном занятии дают от 2 до 4 разных заданий. Каждое повторяется не более 2-3 раз.
Когда дети знакомятся с новым материалом, продолжительность занятия может быть 10-12 минут, так как усвоение нового требует от малыша значительного напряжения; занятия, посвященные повторным упражнениям, можно продлить до 15 мин. Педагог следит за поведением детей на занятии и при появлении у них признаков утомления (частое отвлечение, ошибки в ответах на вопросы, повышенная возбудимость и пр.) прекращает занятие. Следить за состоянием детей вовремя занятий очень важно, так как утомление может привести к потере интереса детей к занятиям.
Занятия часто начинают с элементов игры, сюрпризных моментов - неожиданного появления игрушек, вещей, прихода «гостей» и пр. Это заинтересовывает и активизирует малышей. Однако, когда впервые выделяют какое-то свойство и важно сосредоточить на нем внимание детей, игровые моменты могут и отсутствовать. Выяснение математических свойств проводят на основе сравнения предметов, характеризующихся либо сходными, либо противоположными свойствами (длинный - короткий, круглый - некруглый и т. п.). Используются предметы, у которых познаваемое свойство ярко выражено, которые знакомы детям, без лишних деталей, различаются не более чем 1-2 признаками. Точности восприятия способствуют движения (жесты рукой) и обведение рукой модели геометрической фигуры (по контуру) помогает детям точнее воспринять ее форму, а проведение рукой вдоль, скажем, шарфика, ленточки (при сравнении по длине) - установить соотношение предметов именно по данному признаку.
Детей приучают последовательно выделять и сравнивать однородные свойства вещей. («Что это? Какого цвета? Какого размера?») Сравнение проводится на основе практических способов сопоставления: наложения или приложения.
В ходе работы педагог не только указывает детям на ошибки, но и выясняет их причины. Все ошибки исправляются непосредственно в действии с дидактическим материалом. Пояснения не должны быть назойливыми, многословными. В отдельных случаях ошибки малышей исправляются вообще без пояснений. («Возьми в правую руку, вот в эту! Положи эту полоску наверх, видишь, она длиннее этой!» и т. п.) Когда дети усвоят способ действия, то его показ становится ненужным. Теперь им можно предложить выполнить задание только по словесной инструкции.
Начиная с января можно давать комбинированные задания, позволяющие детям усваивать новые знания, и тренировать их в том, что усвоено ранее. («Посмотрите, какая елочка ниже, и поставьте под нее много грибков!»)
Маленькие дети значительно лучше усваивают эмоционально воспринятый материал. Запоминание у них характеризуется непреднамеренностью. Поэтому нa занятиях широко используются игровые приемы и дидактические игры. Они организуются так, чтобы по возможности в действии одновременно участвовали все дети и им не приходилось ждать своей очереди. Проводятся игры, связанные с активными движениями: ходьбой и бегом. Однако, используя игровые приемы, педагог не допускает, чтобы они отвлекали детей от главного (пусть еще и элементарной, но математической работы).
Пространственные и количественные отношения могут быть отражены на этом этапе только при помощи слов. Каждый новый способ действия, усваиваемый детьми, каждое вновь выделенное свойство закрепляются в' точном слове. Новое слово педагог проговаривает не спеша, выделяя его интонацией. Все дети вместе (хором) его повторяют.[2]
Наиболее сложным для малышей является отражение в речи математических связей и отношений, тaк как здесь требуется умение строить не только простые, но и сложные предложения, употребляя противительный союз а и соединительный а. Вначале приходится задавать детям вспомогательные вопросы, а затем просить их рассказать сразу обо всем. Например: «Сколько камешков на красной полоске? Сколько камешков на синей полоске? А теперь сразу скажи о камешках на синей и красной полосках». Так ребенка подводят к отражению связей: «На красной полоске один камешек, а на синей много камешков».
Воспитатель дает образец такого ответа; Если ребенок затрудняется, педагог может начать фразу-ответ, а ребенок ее закончит.
Для осознания детьми способа действия им предлагают в ходе работы сказать, что и как они делают, а когда действие уже освоено, перед началом работы высказать предположение, что и как надо сделать. («Что надо сделать, чтобы узнать, какая дощечка шире? Как узнать, хватит ли детям карандашей?») Устанавливаются связи между свойствами вещей и действиями, с помощью которых они выявляются. При этом педагог не допускает употребления слов, смысл которых не понятен детям.
Маленький ребенок не может длительно сохранять одну и ту же позу, выполнять одно и то же действие, поэтому воспитатель спокойно относится к кратковременным отвлечениям детей (необходимый кратковременный отдых), не одергивает их постоянно репликами «Сиди смирно!» и пр.[3]