Смекни!
smekni.com

Методические указания к лабораторным работам по курсу «Электроника» (стр. 2 из 5)

2) Время восстановления обратного сопротивления диода (tвосст.) определяется как время, в течение которого обратный ток диода после переключения полярности приложенного напряжения с прямого на обратное достигает своего стационарного значения с заданной точностью (рис. 6, б), обычно 10% от максимального обратного тока. Это время связано с рассасыванием в базе неосновных носителей заряда, накопленных при протекании прямого тока. Оно состоит из двух составляющих tвосст.= t1.+ t2., где t1. – время рассасывания, за которое концентрация неосновных носителей заряда на границе р-п-перехода обращается в ноль; t2. – время разряда диффузионной емкости, связанное рассасыванием неосновных зарядов в объеме базы диода. В целом время восстановления это время выключения диода.

Там, где требуется малое время переключения, используют диоды Шотки. Они имеют переход металл — полупроводник, который обладает выпрямительным эффектом. Накопление заряда в переходе этого типа выражено слабо. Поэтому время переключения может быть уменьшено до значения порядка 100 пс. Другой особенностью этих диодов является малое (по сравнению с обычными кремниевыми диодами) прямое напряжение, составляющее около 0,3 В.

Задание

Расчетная часть

1. Рассчитать вольт-амперную характеристику (ВАХ) выпрямительного диода I=f(U) при температуре окружающей среды +200С и +400С в диапазоне U=0…300мВ (не менее 5 точек).

Ток диода при прямом напряжении U:

,

,
,
,

где

- обратный ток диода,

- температурный потенциал электрона,

k - постоянная Больцмана,

q - заряд электрона.

2. Определить дифференциальное сопротивление и сопротивление диода постоянному току в начале линейного участка ВАХ при температуре окружающей среды +200С и +400С соответственно.

,
.

Исходные данные к расчету

Выпрямительный диод Д223А,

макс=50мA,
=1мкA (
=20
).

Экспериментальная часть

а б

Рис.7

1. Исследовать полупроводниковые выпрямительные диоды VD1, VD2 рис. 7,а,б:

- cнять вольт-амперные характеристики (ВАХ) диодов VD1, VD2 I=f(U),

(не менее 10 точек);

- результаты оформить в виде таблиц 1, 2 и графиков.

Таблица 1

Прямая

ветвь

UVD1

[B]

UR1

[B]

IVD1

[mA]

Обратная ветвь

UVD1

[B]

UR1

[B]

IVD1

[mA]

Таблица 2

Прямая

ветвь

UVD2

[B]

UR1

[B]

IVD2

[mA]

Обратная ветвь

UVD2

[B]

UR1

[B]

IVD2

[mA]

- по результатам определить типы используемых выпрямительных диодов (кремниевый или германиевый);

- определить значение емкостей диодов Cд1, Сд2 при обратном напряжении Uобр=4В.

2. Исследовать схему однополупериодного выпрямителя рис. 7,а:

- зарисовать осциллограммы напряжений на входе и выходе выпрямителя при подаче на вход синусоидального колебания заданной амплитуды и частоты;

- зарисовать осциллограммы напряжений на входе и выходе выпрямителя при подаче на вход колебания типа “меандр” заданной амплитуды и частоты.

3. Исследовать схему диодного амплитудного ограничителя рис. 7,б:

- зарисовать осциллограммы напряжений на входе и выходе амплитудного ограничителя при подаче на вход синусоидального колебания заданной амплитуды и частоты;

- зарисовать осциллограммы напряжений на входе и выходе амплитудного ограничителя при подаче на вход колебания типа “меандр” заданной амплитуды и частоты;

- по результатам определить порог ограничения для данного амплитудного ограничителя рис. 7,б.

Описание лабораторной установки

Принципиальная схема макета, представленная на рис. 7, позволяет изучить основные свойства кремниевого и германиевого полупроводниковых диодов. Для снятия прямой и обратной ВАХ диодов на схемы подается регулируемое напряжение Uрег соответствующей полярности. Схема на рис.7,а позволяет изучить принцип работы однополупериодного выпрямителя. Схема рис.7,б позволяет исследовать амплитудный диодный ограничитель.

Указания по выполнению работы

1. Для снятия вольт-амперных характеристик (ВАХ) диодов VD1, VD2 необходимо использовать регулируемый стабилизированный источник питания 0-15В, напряжение с которого подключается к клеммам “Uрег” на лабораторном стенде с соответствующей полярностью. Для снятия прямой ветви ВАХ на анод диода подается положительное напряжение Uрег (прямое включение диода). Для снятия обратной ветви ВАХ на анод подается отрицательное напряжение Uрег (обратное включение диода). Изменяя напряжение Uрег с источника питания от нуля до 15В, вольтметром постоянного тока или универсальным вольтметром фиксируют напряжения на диоде и резисторе R1, данные заносятся в таблицу. Значение тока рассчитывается по закону Ома.

Для определения значений емкостей диодов Cд1, Сд2 на схемы рис. 7,а,б подают синусоидальное колебание амплитудой Uвх=4В частотой f=0,3МГц. Обратное для диода напряжение, в данном случае отрицательная полуволна, используется для определения реактивного сопротивления емкости диода на заданной частоте. Схема замещения цепей рис. 7, а, б на высокой частоте для обратного напряжения представляет собой резистивно-емкостной делитель, что позволяет приближенно оценить значения емкостей диодов Cд1, Сд2:

где Uвх – амплитуда входного напряжения,

UR1 – значение обратного напряжения (отрицательной полуволны) на резисторе R1,

UVD2 – значение обратного напряжения на диоде VD2.

Значения Uвх, UR1, UVD2 определяют с помощью осциллографа.

2. Для исследования схемы однополупериодного выпрямителя на схему рис.7,а последовательно подают синусоидальное колебание и колебание типа “меандр” с генератора низкой частоты. При этом выход генератора подключается к клеммам “Uрег” лабораторного стенда. Значение амплитуд и частот сигналов указывается преподавателем. С помощью осциллографа зарисовать сигналы на входе и выходе однополупериодного выпрямителя.

3. Для исследования схемы диодного амплитудного ограничителя на схему рис.7,б последовательно подают синусоидальное колебание и колебание типа “меандр” с генератора низкой частоты. При этом выход генератора подключается к клеммам “Uрег” лабораторного стенда. Значение амплитуд и частот сигналов указывается преподавателем. С помощью осциллографа зарисовать сигналы на входе и выходе амплитудного ограничителя. По результатам определить порог ограничения амплитудного ограничителя.