ПЕНЗЕНСКИЙ ГОСУДАРСТВЕНЫЙ УНИВЕРСИТЕТ
ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ
Методические указания
к лабораторным работам по курсу
«Электроника»
ПЕНЗА 2006
В лабораторных работах исследуются основные характеристики и параметры полупроводниковых диодов.
Описания работ составлены с ориентацией на фронтальное проведение работ, содержат краткие теоретические сведения, расчетные и экспериментальные задания, методику выполнения, контрольные вопросы, позволяющие студенту усвоить необходимый теоретический материал.
Методические указания подготовлены на кафедре “Радиотехника и радиоэлектронные системы” и предназначены для студентов специальности “Радиотехника”, изучающих курс “Электроника”.
Ил. 11, табл. 8, библиогр. 6 назв..
Рецензент:
Лабораторная работа №1
Исследование полупроводниковых выпрямительных диодов
Цель работы - ознакомление с основными параметрами и характеристиками полупроводниковых выпрямительных диодов.
Общие сведения
Полупроводниковым диодом называют электропреобразовательный полупроводниковый прибор с одним или несколькими p-n-переходами и двумя выводами.
Структура полупроводникового диода с электронно-дырочным переходом и его условное графическое обозначение приведены на рис. 1, а, б.
а б
Рис. 1
Буквами p и n обозначены слои полупроводника с проводимостями соответственно p-типа и n-типа. Обычно концентрации основных носителей заряда (дырок в слое p и электронов в слое n) сильно различаются. Одна из областей p-n-структуры, называемая эмиттером, имеет большую концентрацию основных носителей заряда, чем другая область, называемая базой.
В зависимости от основного назначения и вида используемого явления в p-n-переходе различают шесть основных функциональных типов электропреобразовательных полупроводниковых диодов: выпрямительные, высокочастотные, импульсные, туннельные, стабилитроны, варикапы. Каждый тип диода содержит ряд типономиналов, регламентированных соответствующим ГОСТом.
На рис. 2 представлены структуры планарно-эпитаксиального (а) и сплавного (б) диодов. База и эмиттер образуют омические переходы (контакт) с электродами. К электродам подсоединены металлические выводы, посредством которых диод включается в цепь.
а б
Рис. 2
Основной характеристикой полупроводниковых диодов служит вольт-амперная характеристика. В отличие от характеристики идеального p-n- перехода (пунктирная кривая на рис. 3,а), характеристика реального диода (сплошная кривая на рис. 3,а) в области прямых напряжений U располагается несколько ниже из-за падения части приложенного напряжения на объёмном сопротивлении базы диода r .
Уравнение вольт-амперной характеристики имеет вид:
где U - напряжение на p-n-переходе; I0 -обратный (или тепловой) ток,
- температурный потенциал электрона.а б
Рис. 3
В области обратных напряжений можно пренебречь падением напряжения в объёме полупроводника. При достижении обратным напряжением определённого критического значения ток диода начинает резко возрастать. Это явление называют пробоем диода.
Различают два основных вида пробоя электронно-дырочного перехода:
электрический и тепловой. В обоих случаях резкий рост тока связан с увеличением числа носителей заряда в переходе. Электрический пробой бывает двух видов - лавинный и туннельный.
Полупроводниковые диоды отличаются друг от друга материалом полу-
проводника. Наиболее часто в них используют германий или кремний. Вольт-амперные характеристики кремниевого и германиевого диодов представлены на рис. 3,б. При повышении температуры абсолютная величина изменения обратного тока в кремниевом диоде (рис. 4,а) значительно меньше, чем в германиевом (рис. 4,б).
а б
Рис. 4
Выпрямительные диоды используют для выпрямления переменных токов частотой 50 Гц – 100 кГц. В них используется главное свойство p-n-перехода – односторонняя проводимость. Главная особенность выпрямительных диодов большие площади p-n-перехода, поскольку они рассчитаны на выпрямление больших по величине токов. Основные параметры выпрямительных диодов даются применительно к их работе в однополупериодном выпрямителе с активной нагрузкой (без конденсатора, сглаживающего пульсации).
Среднее прямое напряжение Uпр..ср — среднее за период прямое напряжение на диоде при протекании через него максимально допустимого выпрямленного тока.
Средний обратный ток Iобр. ср — средний за период обратный ток, измеряемый при максимальном обратном напряжении.
Максимально допустимое обратное напряжение Uобр. mах (Uобр. и mах) – наибольшее постоянное (или импульсное) обратное напряжение, при котором диод может длительно и надежно работать.
Максимально допустимый выпрямленный ток Iвп. ср mах — средний за период ток через диод (постоянная составляющая), при котором обеспечивается его надежная длительная работа.
Превышение максимально допустимых величин ведет к резкому сокращению срока службы или пробою диода.
Максимальная частота fтах — наибольшая частота подводимого напряжения, при которой выпрямитель на данном диоде работает достаточно эффективно, а нагрев диода не превышает допустимой величины.
В выпрямительном устройстве энергия переменного тока преобразуется в энергию постоянного тока за счет односторонней проводимости диодов.
Рис.5
На рис. 5 приведена схема однополупериодного выпрямителя. Работа выпрямителя происходит следующим образом. Если генератор вырабатывает синусоидальное напряжение,
e(t) = Еm sin w t,
то в течение положительного (+) полупериода напряжение для диода является прямым, его сопротивление мало, и через резистор проходит ток, который создает на резисторе RН падение напряжения Uвых , повторяющее входное напряжение e(t). В следующий, отрицательный (-) полупериод, напряжение для диода является обратным, сопротивление диода велико, тока практически нет и, следовательно, Uвых = 0. Таким образом, через диод и RН протекает пульсирующий выпрямленный ток. Он создает на резисторе RН пульсирующее выпрямленное напряжение Uвых .
Полезной частью выпрямленного напряжения является его постоянная составляющая или среднее значение U ср (за полупериод):
Ucp = Umax / p =0,318 Umax
Таким образом, U ср составляет около 30% от максимального значения.
Выпрямленное напряжение обычно используется в качестве напряжения питания электронных схем.
Высокочастотные (универсальные) и импульсные диоды применяют для выпрямления токов, модуляции и детектирования сигналов с частотами до нескольких сотен мегагерц. Импульсные диоды используют в качестве ключевых элементов в устройствах с микросекундной и наносекундной длительностью импульсов. Их основные параметры:
Максимально допустимые обратные напряжения Uобр. mах (Uобр. и mах) – постоянные (импульсные) обратные напряжения, превышение которых приводит к его немедленному повреждению.
Постоянное прямое напряжение Uпр – падение напряжения на диоде при протекании через него постоянного прямого тока Iпр – заданного ТУ.
Постоянный обратный ток Iобр — ток через диод при постоянном обратном напряжении (Uобр мах). Чем меньше Iобр , тем качественнее диод.
Емкость диода Сд — емкость между выводами при заданном напряжении. При увеличении обратного напряжения (по модулю) емкость Сд уменьшается.
При коротких импульсах необходимо учитывать инерционность процессов включения и выключения диода, что характеризуется следующими параметрами.
1) Время установления прямого напряжения на диоде (tуст ) – время, за которое напряжение на диоде при включении прямого тока достигает своего стационарного значения с заданной точностью (рис. 6,а).
а б
Рис. 6
Это время связанно со скоростью диффузии и состоит в уменьшении сопротивления области базы за счёт накопления в ней неосновных носителей заряда, инжектируемых эмиттером. Первоначально оно высоко, т.к. мала концентрация носителей заряда. После подачи прямого напряжения концентрация неосновных носителей заряда в базе увеличивается, это снижает прямое сопротивление диода.