Смекни!
smekni.com

Методические указания по выбору характеристик и уставок защиты электрооборудования с использованием микропроцессорных терминалов серии (стр. 9 из 12)

Важно отметить, что на предыдущей линии Л1 двухступенчатая токовая защита может быть выполнена не только на аналоговом реле косвенного действия, но и на реле прямого действия: РТМ (отсечка) и РТВ (МТЗ). В этих случаях, прежде всего, следует убедиться в возможности надёжного срабатывания токовой отсечки (реле РТМ) при реальных значениях погрешности трансформаторов тока, поскольку для этих защит допускаются погрешности трансформаторов тока более 10% и реально они могут быть даже более 50% [6].

Случай 4: на питающем элементе 2 (рис.1-15) установлена максимальная токовая защита с независимой характеристикой с заданными уставками: 600 А (первичных), 1 с.

Необходимо выбрать обратнозависимую характеристику МТЗ цифрового реле на предыдущей (нижестоящей) линии Л1, которая обеспечивала бы необходимую селективность с защитой питающего (вышестоящего) элемента 2. Таким образом, необходимо обеспечить селективность для двух однотипных защит SEPAM.

Ступень селективности Dt между характеристиками защит 2 и 1 должна обеспечиваться при токе КЗ, равном току срабатывания вышестоящей защиты 2 минус ток нагрузки неповрежденных элементов (рис.1-15): Iк = 600 – 200 = 400 А.

Рис.1-15. Пример согласования обратнозависимой характеристики реле SEPAM или SPAC и независимой характеристики последующего элемента 2 (SEPAM)

Время срабатывания защиты 1 при этом токе КЗ выбирается по условию селективности:

tс.з.1 = tс.з.2 - Dt = 1 - 0,3 = 0,7 с.

Предположим, что ток срабатывания защиты 1 не более 125 А, и определим кратность этого тока в выбранной контрольной точке характеристики 1:

I* = 400 / 125 = 3,2.

Как уже указывалось выше при расчете МТЗ линий 10(6) кВ в России рекомендуется, прежде всего, рассмотреть возможность использования "стандартной" обратнозависимой характеристики цифрового реле. Для нее определяется по выражению (1-9) коэффициент TMS:

TMS =

=
= 0,12.

Для построения стандартной времятоковой характеристики цифрового реле SEPAM (или "нормальной" характеристики для SPAC) защиты 1 рассчитывается несколько значений tс.з 1 по выражению (1-10):

При I* = 1,5 tс.з 1 =

= 2 с (Iк = 187,5 А),

2 (250 A).............…………….. 1,2 с

2,5 (312,5 А)...........…………… 0,9 с и т.д.

Кривая 1 построена на рис.1-15, б.

Учет влияния нагрузки очень важен для обеспечения селективной работы защит с обратнозависимыми времятоковыми характеристиками, так как время срабатывания этих защит зависит от значения проходящего тока. Если бы мы не учли влияние тока нагрузки неповрежденных линий (200 А в этом примере), то могли бы ошибочно выбрать контрольную точку с параметрами 0,7 с и 600 А и построить характеристику 1' (штриховая линия на рис.1-15, б). Однако при токе КЗ, равном 600 А, когда приходит в действие защита 2 и срабатывает через 1 с, через защиту 1 проходит не 600 А, а (600 − 200) А, т.е. 400 А! При этом токе время срабатывания защиты 1 с ошибочно выбранной характеристикой 1' будет более 1,2 с, и защита попросту не успеет сработать раньше, чем защита 2 (вышестоящая). Это показывает штрихпунктирная кривая 1" на рис.1-15, б.

Неселективное отключение всей секции 10 кВ приведет к дополнительному ущербу от недоотпуска электроэнергии. Можно приближенно оценить этот ущерб, как делается в зарубежных странах, например в Скандинавии.

Дополнительно отключенная нагрузка с Iн =200 А соответствует 3600 кВ×А и при cos j = 0,8 равна Р = 2880 кВт.

Стоимость ущерба в USD на 1 кВт от прекращения электроснабжения рассчитывается по формуле:

c = a + t × b, (1-12)

где a - постоянная (фиксированная) часть ущерба (USD/кВт); b - переменная часть ущерба (USD/кВт×ч); t - продолжительность отсутствия электроснабжения (ч).

Ущерб в USD при известном электропотреблении Р подсчитывается с учетом Р:

у = a × P + t × b × P, (1-13)

где Р - потребляемая мощность (кВт).

Постоянная составляющая (a) учитывается, невзирая на продолжительность отсутствия электроснабжения, будь то одна секунда или несколько часов.

Потребительский сектор Сельский Бытовой Промыш-ленный Обслужи-вание Муниципаль-ный
Постоянная составляющая "а",USD/кВт

0

0

1,2

1,1

0,5

Переменная составляющая "b",USD/кВт×ч

8,1

1,6

12,2

7,8

4,8

Переменная составляющая (b) различна для разных потребителей и дана как средняя величина в вышеприведенной таблице.

В этой таблице стоимость ущерба у скандинавских потребителей по причине прекращения электроснабжения базируется на данных из работы "Kostnader fцr elavbrott, TemaNord, 1994 627". Количество проанализированных в этой работе потребителей более 13 тысяч. Главный метод для анализа - обследование потребителей. Стоимость ущербов определялась самими потребителями [6].

Предположим, что на оперативные переговоры и осмотр распределительного устройства 10 кВ, отключенного действием МТЗ, потребуется 0,5 часа. Тогда продолжительность отсутствия электроснабжения в выражениях (1-12) и (1-13) равна t = 0,5 ч. Легко подсчитать, что ущерб для сельских потребителей:

у = 0 + 0,5 × 8,1 × 2880 = 11664 USD,

а для промышленных потребителей:

у = 1,2 × 2880 + 0,5 × 12,2 × 2880 = 21024 USD.

Эти, разумеется, весьма приближенные цифры указывают на важность правильного выбора характеристик срабатывания максимальных токовых защит, как и других устройств релейной защиты, а следовательно, и на большую ответственность инженеров по расчетам релейной защиты.

Случай 5, когда необходимо выбрать параметры срабатывания защиты 2 ввода (трансформатора), питающего несколько фидеров 10 кВ, два из которых работают параллельно (рис.1-16). При этом следует учитывать распределение токов при КЗ в сети приёмной подстанции РТП2, когда через защиту 1 каждой из линий Л1 и Л2 идет 0,5Iк, а через защиту 2 - полный ток Iк плюс суммарный рабочий ток нагрузки неповреждённых элементов Iн, в данном примере равный 500 А. В наиболее тяжёлом расчётном случае принимается такое значение тока Iк, при котором приходит в действие последующая защита 2. В данном примере задано Iс.з.2 = 1600 А, а ток Iк = Iс.з.2 – Iн = 1600 – 500 = 1100 А. Характеристика защиты 2 - независимая. На линиях Л1 и Л2 со стороны питающей подстанции РТП1 максимальные токовые защиты 1 выполнены на цифровых реле с характеристиками по стандарту МЭК, в данном примере ток срабатывания 200 А, характеристика «стандартная», коэффициент TMS равен 0,1.

Для построения времятоковой характеристики защиты 1 для случая раздельной работы Л1 и Л2 используется выражение (1-10). Для построения "суммарной" времятоковой характеристики для случая параллельной работы линии Л1 и Л2 используется это же выражение, но вместо I* подставляется значение 0,5I*, которое отражает такое токораспределение, при котором по каждой из этих линий идёт половина тока КЗ. Например,

t =

=
= 0,75 c.

На рис.1-16, б времятоковая характеристика 1 соответствует раздельной работе линий Л1 и Л2, а характеристика 1' - параллельной работе этих линий.

Характеристика 1", учитывающая ток нагрузки, строится по точкам, определяемым также по выражению (1-8), в котором вместо I* используется (0,5 I* − Iн). Эта характеристика оказывается сдвинутой вправо на значение Iн, в данном примере на 500 А (кривая 1" на рис.1-16, б).

Рис.1-16. Пример согласования характеристик токовых защит для сети

с параллельно работающими линиями Л1 и Л2.

При заданном токе срабатывания защиты 2 равном Iс.з.2 = 1600 А определяется tс.з.2 = tс.з.1 + Dt = 0,68 + 0,3 = 1 с, где tс.з.1 = 0,68 с определяется по выражению (1-8), в котором

=
=
= 2,75;

либо по кривой 1" на рис.1-16, б.

Если бы линии Л1 и Л2 работали раздельно на РТП2 (например, через межсекционный выключатель), можно было бы выбрать меньшее время срабатывания защиты питающего элемента 2 (примерно на одну ступень).

Параллельная работа более чем двух линий крайне нежелательна, так как требует увеличения либо тока, либо времени срабатывания защиты питающего элемента 2. Например, при том же токе срабатывания Iс.з.2 пришлось бы выбрать tс.з.2 = 1,5 с, если бы параллельно работали три линии.

Особенно опасно несанкционированное включение линий 10(6) кВ на параллельную работу. На рис.1-16, б штрихпунктирная кривая 1''' соответствует времятоковой характеристике для случая параллельной работы трёх линий. При этом наглядно видно, что защита питающего ввода 2 сработает неселективно при КЗ в точке К1 и отказе выключателя или защиты поврежденного элемента.