Смекни!
smekni.com

Методические указания по лабораторным работам По дисциплине (стр. 1 из 6)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

Тихоокеанский государственный университет

Институт экономики и управления

Кафедра Экономическая кибернетика

Методические указания по лабораторным работам

По дисциплине Методы социально-экономического прогнозирования

Для специальности

080116.65 «Математические методы в экономике»

Методические указания разработаны в соответствии с составом УМКД

Методические указания разработала Порошина Л.А. _____________

Методические указания утверждены на заседании кафедры,

протокол № ______ от «___» _______________ 200__ г.

Зав. кафедрой _________ «___» ______________ 200__ г. Пазюк К.Т.

Методические указания по лабораторным работам по дисциплине «Эконометрическое моделирование» включают тематику лабораторных заданий, выполняемых во время аудиторных занятий.

Методические указания рассмотрены и утверждены на заседании УМКС и рекомендованы к изданию

протокол № ______ от «___» _______________ 200__ г.

Председатель УМКС _______ «___» __________ 200__ г.

Директор института _________ «___» ____________ 200__ г. Зубарев А.Е.

Введение

Реалии нынешнего этапа развития российской государственности выдвигают в число первоочередных задачу перехода к стабильному, предсказуемому и эффективному развитию экономики страны, что в свою очередь не возможно без специальных знаний в области методологии, методики и технологии составления научно-обоснованных макро- и микроэкономических прогнозов социально-экономического развития. Масштаб стоящих перед российским бизнесом проблем, а также качественный уровень развития современного научно-технического потенциала требует соответствующей теоретической и практической подготовки специалистов в области экономико-математического моделирования. Прогнозная информация, с одной стороны, необходима как основа планирования деятельности любого социально-экономического объекта, а с другой стороны - как предварительная оценка последствий принимаемых решений с целью их оптимизации. Отсюда ясна важность данной дисциплины для формирования специалиста в области математических методов и исследования операций в экономике.

В этой связи цель дисциплины "Методы социально-экономического прогнозирования" - вооружить студентов специальности "Математические методы в экономике" - 080116.65 знаниями общих закономерностей составления научных прогнозов развития социально-экономических объектов; познакомить их с максимально широким инструментарием выработки прогнозов развития социально-экономических объектов, а также методиками его использования в практике прогнозирования; выработать в процессе обучения у студентов навыки грамотного использования аппарата математического моделирования посредством применения передовых информационных технологий.

Задачи курса: изучение методологических основ прогнозирования, а также приемов и методов прогнозирования экономических процессов.

Дисциплина «Методы социально-экономического прогнозирования» опирается на материал учебных дисциплин: «Математический анализ», «Теория вероятности и математическая статистика», «Экономическое моделирование», «Математические методы исследования операций», «Эконометрика» и других дисциплин. В соответствии с Государственным образовательным стандартом она является дисциплиной специализации по специальности «Математические методы в экономике» и полностью соответствует по содержанию его требованиям.

Основная цель лабораторных занятий - углубленное изучение проблем, затронутых в лекционном курсе, и отработка навыков в применении изучаемых методов и процедур прогнозирования с использованием современного программного обеспечения персональных компьютеров.

В качестве базового информационно-программного инструментария на лабораторных работах предлагается воспользоваться продуктами Excel, StatGraphics, Statistica. В ходе освоения дисциплины студенты могут ознакомиться и с дополнительными программными средами, например, Matlab (Statistics Toolbox, GARCH Toolbox), Mathcad, SPSS, Eviews и др., а также специальными оптимизационными и модулями математических пакетов Matlab (Optimization Toolbox), Mathcad, Mathematica и др.

Изучение дисциплины заканчивается написанием и защитой курсовой работы и сдачей итогового экзамена.

Краткие характеристики лабораторных работ

Тема 1. Прогнозирование с учетом сезонной составляющей

Задание. Построить точечный и интервальный прогноз на основе мультипликативной модели, аддитивной модели и модели Винторса.

Исполнение: выполнение индивидуального задания с использованием Excel. Интерпретация результатов решения.

Оценка. Практическая реализация теоретических методов прогнозирования.

Время выполнения заданий: 2 часа.

Методические указания

Построение аддитивной модели временного ряда. Обратимся к данным об объеме правонарушений на таможне за четыре года, представленным в табл. 1.

Было показано, что данный временной ряд содержит сезонные колебания периодичностью 4, т.к. количество правонарушений в первый-второй кварталы ниже, чем в третий-четвертый. Рассчитаем компоненты аддитивной модели временного ряда.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

1.1. Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии (гр. 3 табл. 1).

1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 1). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 1).

Таблица 1 – Расчёт сезонной компоненты

№ квартала,

Количество правонарушений,

Итого за четыре квартала

Скользящая средняя за четыре квартала

Центрированная скользящая средняя

Оценка сезонной компоненты

1

2

3

4

5

6

1

375

2

371

2630

657,5

3

869

2612

653

655,25

213,75

4

1015

2712

678

665,5

349,5

5

357

2835

708,75

693,75

-336,75

6

471

2840

710

709,375

-238,375

7

992

2873

718,25

714,125

277,875

8

1020

2757

689,25

703,75

316,25

9

390

2757

689,25

689,25

-299,25

10

355

2642

660,5

674,875

-319,875

11

992

2713

678,25

669,375

322,625

12

905

2812

703

690,625

214,375

13

461

2740

685

694

-233

14

454

2762

690,5

687,75

-233,75

15

920

16

927

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6 табл. 1). Используем эти оценки для расчета значений сезонной компоненты

(табл. 2). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты
. В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.