Смекни!
smekni.com

Методические указания и задания к контрольной работе для студентов-заочников ссуз по специальности 230106 «Техническое обслуживание средств вычислительной техники и компьютерных сетей» 2009 (стр. 3 из 11)

- Температура окружающей среды, при которой может работать схема. Здесь выделяют два диапазона:

- коммерческий (0 0С … +700С);

- расширенный (-40 0С … +85 0С).

- Помехоустойчивость - определяет способность схемы выполнять свои функции при наличии помех. Помехоустойчивость оценивается интенсивностью помех, при которых нарушение функций устройства еще не превышает допустимых пределов. Чем сильнее помеха, при которой устройство остается работоспособным, тем выше его помехоустойчивость.

- Нагрузочная способность, или коэффициент разветвления по выходу, определяется числом схем этой же серии, входы которых могут быть присоединены к выходу данной схемы без нарушения ее работоспособности. Чем выше нагрузочная способность, тем шире логические возможности схемы и тем меньше таких микросхем необходимо для построения сложного вычислительного устройства. Однако с увеличением этого коэффициента ухудшаются помехоустойчивость и быстродействие.

- Надежность - это способность схемы сохранять свой уровень качества функционирования при установленных условиях за установленный период времени. Обычно характеризуется интенсивностью отказов (час-1) или средним временем наработки на отказ (час). В настоящее время этот параметр для больших инте- гральных схем обычно не указывается изготовителем. О надежности МП БИС можно судить по косвенным показателям, например, по приводимой разработчиками средств вычислительной техники надежности изделия в целом.

- Характеристики технологического процесса. Основной показатель здесь - разрешающая способность процесса. В настоящее время она составляет 32 нм, то есть около 30 тыс. линий на 1 мм. Более совершенный технологический процесс позволяет создать микропроцессор, обладающий большими функциональными возможностями.

Внутренняя структура микропроцессора. Арифметико-логи­ческий блок: арифметико-логическое устройство, аккумулятор, ма­тематический сопроцессор. Устройство управления: регистр ко­манд, счетчик PC. Регистровое запоминающее устройство: регистры общего назначения, регистры специального назначения. Системная магистраль микропроцессорной системы: шина данных, шина управления, шина адреса.

Обобщенная структурная схем МП дана на рисунке 4.

Рисунок 4 – Обобщенная структурная схема МП

В универсальном 32-разрядном микропроцессоре выделяют следующие группы регистров:

- основные функциональные регистры;

- регистры процессора с плавающей точкой;

- системные регистры;

- регистры отладки и тестирования.

Первые две группы регистров используются прикладными программами, последние две группы - системными программами, имеющими наивысший уровень привилегий.

Рассмотрим каждую из этих групп подробнее.

Основные функциональные регистры

В состав регистров этой группы входят:

- регистры общего назначения;

- регистр указателя команд;

- регистр флагов;

- сегментные регистры.

Состав и структура регистров общего назначения представлены на рисунке 5

Блок состоит из восьми 32-разрядных регистров. К каждому из них можно обращаться как к одному двойному слову (32 разряда).

Отметим, что понятие "слово" в данной архитектуре не идентично разрядности микропроцессора. Исторически сложилось так, что под словом понимается единица информации длиной 2 байта, или 16 двоичных разрядов. К младшим 16 разрядам регистров общего назначения можно обращаться так же, как и в 16-разрядном микропроцессоре (AX, BX…SP). Четыре 16-разрядных регистра AX, BX, CX, DX допускают обращение отдельно к своему старшему и младшему байту. Тем самым регистры позволяют на программном уровне работать либо с восемью 32-разрядными, либо с восемью 16-разрядными, либо с восемью 8-разрядными регистрами.

Рисунок 5 - Регистры общего назначения

Все эти регистры используются для хранения промежуточных результатов вычислений и составных частей адреса при различных режимах адресации операндов, расположенных в памяти.

Кроме того, ряд регистров этого блока имеют свое, присущее только им назначение:

- EAX/AX/AL - регистр-аккумулятор, используется для сокращения длины команды при работе с непосредственными операндами;

- AX/AL - приемник (источник) данных в командах ввода (вывода) данных из (в) внешнего устройства;

- DX - определяет адрес ВУ в командах ввода (вывода) данных;

- ECX - используется в качестве счетчика циклов в командах циклов;

- BP, SP - используются при работе со стеком;

- ESI, EDI (DI, SI) - определяют положение строк в памяти в командах обработки строк.

Регистр указателя команд и регистр флагов имеют длину 32 разряда.

Младшее слово каждого из этих регистров (разряды 0-15) функционально соответствует аналогичным разрядам в 16-разрядном микропроцессоре (рис. 2.2).

Рисунок 6 - Регистр указателя команд и регистр флагов

Регистр указателя команд EIP хранит смещение адреса команд относительно начала сегмента кода (сегмента команд).

Регистр флагов EFLAGS содержит признаки результата выполненной команды, а также разряды, управляющие работой микропроцессора: обработкой маскированных прерываний, последовательностью вызываемых задач, вводом-выводом и рядом других действий. Из этих флагов рассмотрим только наиболее значимые и интересные с точки зрения дальнейшего изучения работы микропроцессора.

К битам состояния регистра флагов относятся:

- ZF - признак нуля результата (ZF = 1, если все разряды результата равны 0);

- SF - знак результата (SF = 1, если старший разряд результата равен 1, то есть если результат отрицательный);

- OF - признак переполнения (OF = 1, если при выполнении арифметических операций над числами со знаком происходит переполнение разрядной сетки);

- CF - флаг переноса (CF = 1, если выполнение операции сложения приводит к переносу за пределы разрядной сетки), устанавливается также в некоторых других операциях;

- PF - признак четности (дополняет до нечетного числа единиц младший байт результата);

- AF - флаг полупереноса (используется при операциях над двоичнодесятичными числами);

- DF - устанавливается пользователем и определяет порядок обработки строк символов в соответствующих командах: декремент (при DF = 1) или инкремент (при DF = 0) содержимого индексных регистров

- ESI, EDI (SI, DI) после обработки одного символа.

Основным способом организации МПС является магистрально-модульный (рисунок 7): все устройства, включая и микропроцессор, представляются в виде модулей, которые соединяются между собой общей магистралью. Обмен информацией по магистрали удовлетворяет требованиям некоторого общего интерфейса, установленного для магистрали данного типа. Каждый модуль подключается к магистрали посредством специальных интерфейсных схем.


Рисунок 7 - Магистрально-модульный принцип построения микропроцессорной системы

На интерфейсные схемы модулей возлагаются следующие задачи:

- обеспечение функциональной и электрической совместимости сигналов и протоколов обмена модулей и системной магистрали;

- преобразование внутреннего формата данных модуля в формат данных системной магистрали и обратно;

- обеспечение восприятия единых команд обмена информацией и преобразование их в последовательность внутренних управляющих сигналов.

Эти интерфейсные схемы могут быть достаточно сложными. Обычно они выполняются в виде специализированных микропроцессорных БИС. Такие схемы принято называть контроллерами.

Контроллеры обладают высокой степенью автономности, что позволяет обеспечить параллельную во времени работу периферийных устройств и выполнение программы обработки данных микропроцессором.

Кроме того, предварительно буферируя данные, контроллеры обеспечивают пересылку сразу для многих слов, расположенных по подряд идущим адресам, что позволяет использование так называемого "взрывного" (burst) режима работы шины - 1 цикл адреса и следующие за ним многочисленные циклы данных.

Недостатком магистрально-модульного способа организации ЭВМ является невозможность одновременного взаимодействия более двух модулей, что ставит ограничение на производительность компьютера.

Взаимодействие микропроцессора с оперативной памятью (ОП) и внешними устройствами (ВУ) проиллюстрировано на рисунке 8.


Рисунок 8 - Взаимодействие микропроцессора с оперативной памятью и внешними устройствами

Микропроцессор формирует адрес внешнего устройства или ячейки оперативной памяти и вырабатывает управляющие сигналы - либо IOR/IOW при обращении на чтение/запись из внешнего устройства, либо MR/MW для чтения/записи из оперативной памяти.

Состав шины:

- Шина адреса (Address Bus) — для пересылки кода адреса (индивидуального номера устройства, участвующего в обмене в данный момент).

- Шина данных (Data Bus) — для пересылки данных между устройствами. Двунаправленная шина, состоит из нескольких байтов (1, 2, 4, 8);

- Шина управления (Control Bus) — для пересылки отдельных управляющих сигналов: тактовых, стробирующих, подтверждающих, инициирующих и т.д.;

- Шина питания (Power Bus) — для подведения к устройствам напряжений питания

Этапы развития архитектуры универсальных микропроцессоров

Первый микропроцессор был разработан фирмой Intel в 1971 году. Он получил название I-4004, имел 4-разрядную структуру и был ориентирован на использование в калькуляторах. Впоследствии этой же фирмой был выпущен еще один 4-разрядный микропроцессор - I-4040.