Смекни!
smekni.com

Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами (стр. 4 из 7)

Проверка теоретических положений метода АРД проводилась путем статистического моделирования соответствующих массивов данных и их обработки цифровыми фильтрами.

В таблице 1 приведены 4 группы результатов обработки по формулам (11.2.20-21) двух статистически независимых и постоянных по средним значениям массивов данных n и m (модели постоянных полей) при различных установках СРД по скользящему окну Кс счета текущих значений

= mi/ni и Di(М) по массиву m. Текущая точка обработки данных – по центру окна. Количество отсчетов в каждом массиве – 1000, распределение значений отсчетов соответствует закону Пуассона. Определение прогнозных отсчетов Мi по массиву m для использования в уравнении (11.2.20) проводилось со сглаживанием отсчетов в скользящем окне Ks низкочастотного цифрового фильтра (вариант без сглаживания при Ks = 1). В качестве низкочастотного фильтра в алгоритме СРД используется (здесь и в дальнейшем) весовое окно Лапласа-Гаусса. Теоретическое значение Dz.т. дисперсии результатов z определялось по выражению (11.2.22) с расчетом дисперсии D(M) по выражению D(M) =
[1+
(1/(Kc
)+1/(Kc
))]. При сглаживании прогнозных отсчетов значение DM в выражении (11.2.22) принималось равным DM. =
×Hs, где Hs – коэффициент усиления сглаживающим фильтром дисперсии шумов (сумма квадратов коэффициентов цифрового фильтра). Дополнительно в таблице приводятся зарегистрированные средние значения коэффициента снижения статистических флюктуаций h = dn2/dz2.

Таблица 1. Статистика результатов моделирования СРД.

(Основной массив

= 9.9, Dn = 9.7, дополнительный массив
= 9.9, Dm = 9.9, 1000 отсчетов.)

Kc

Ks

z

Dz

Dz.т.

h

Kc

Ks

z

Dz

Dz.т.

h

3

1

9,7

5,7

6,19

1,7

11

3

9,6

3,6

3,80

2,8

5

1

9,7

5,4

5,78

1,8

11

5

9,6

3,3

3,55

3,0

11

1

9,6

5,1

5,36

1,9

11

11

9,6

3,1

3,22

3,2

21

1

9,6

5,0

5,18

2,0

11

21

9,6

3,0

3,11

3,3

51

1

9,6

5,0

5,05

2,0

11

51

9,6

3,0

2,99

3,3

3

3

9,7

4,1

4,71

2,4

3

11

9,8

4,5

4,26

2,2

5

5

9,7

3,6

4,01

2,8

5

11

9,7

3,5

3,78

2,8

11

11

9,6

3,1

3,22

3,2

11

11

9,6

3,1

3,22

3,2

21

21

9,6

2,9

2,91

3,4

21

11

9,6

3,1

3,12

3,2

51

51

9,6

2,7

2,66

3,7

51

11

9,6

3,1

2,99

3,2

Как видно из данных таблицы, практические результаты фильтрации достаточно хорошо совпадают с ожидаемыми по данным теоретических расчетов. Некоторое уменьшение среднего значения z по отношению к исходному среднему значению n определяется асимметричностью пуассоновского типа модели. При малых средних значениях модельных отсчетов в массиве m это приводит к определенной статистической асимметрии в работе СРД, т.к. при (+sm)2 > (-sm)2 среднестатистическое доверие к дополнительной информации с отсчетами Mi+s меньше, чем с отсчетами Mi-s. Этим же фактором, по-видимому, вызвано и большее расхождение между теоретическими и фактическими значениями Dz при малых значениях окна Кс. Можно также заметить, что по значению коэффициента h фильтрация выходит на теоретические значения (Þ 1+M/N) только при достаточно точном определении значений

и Di(М), что требует увеличения окна Кс счета этих параметров для полного использования дополнительной информации.

Таблица 2.

Эффект использования дополнительной информации, в полном соответствии с выражением (11.2.22), усиливается при предварительном сглаживании статистических вариаций отсчетов Mi и при увеличении значений отсчетов дополнительного массива (материалы по последнему случаю не приводятся, т.к. не имеют какой-либо дополнительной информации). В спокойных по динамике полях еще большая глубина регуляризации может быть достигнута при счете значений

и Dm по сглаженному массиву М, что позволяет повысить вес прогнозных отсчетов Mi. Результаты моделирования данного варианта в тех же условиях, что и для таблицы 1, приведены в таблице 2. Такой же эффект, в принципе, может достигаться и непосредственным введением дополнительного коэффициента веса в выражение (11.2.20) в качестве множителя для значения D(M), что позволяет осуществлять внешнее управление глубиной регуляризации.

Оценка сохранения разрешающей способности полезной информации была проведена на фильтрации детерминированных сигналов n и m предельной формы – в виде прямоугольных импульсов. Оценивались два фактора: сохранение формы полезного сигнала и подавление статистических шумов, наложенных на полезный сигнал.

При установке СРД без усреднения данных по массиву М (Кs = 1, прогноз Мi по текущим значениям массива М) при любых значениях окна Кс выходной массив Z без всяких изменений повторяет массив N, т.е. не изменяет полезный сигнал и полностью сохраняет его частотные характеристики. Естественно, при условии, что массив М пропорционален массиву N.

При Кs > 1 форма выходных кривых несколько изменяется и приведена на рис. 11.3.1. В индексах выходных кривых z приведена информация по установкам окон СРД: первая цифра - окно счета дисперсии DM и текущего значения

(в количестве точек отсчетов), вторая цифра (через флеш) - окно сглаживания отсчетов М весовой функцией Лапласа-Гаусса и определения прогнозных отсчетов Мi. Для сравнения с результатами типовой низкочастотной фильтрации на рисунке приведена кривая n25 отсчетов N, сглаженных весовой функцией Лапласа-Гаусса с окном 25 точек.