Смекни!
smekni.com

Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами (стр. 5 из 7)

Рис. 11.3.1. СРД прямоугольного импульса. Счет Dm по несглаженному массиву М.

На рис. 11.3.1а приведен результат СРД прямоугольного импульса с амплитудным значением 10 на фоне 5 при отношении m/n = 1 (равные значения отсчетов N и М). Дисперсия DN в выражении (11.2.21) принималась равной значению отсчетов N (статистика Пуассона). Как видно на рисунке, при сохранении фронтов сигнальной функции сглаживание прогнозных значений Мi приводит к появлению искажения формы сигнала по обеим сторонам скачка, интервал которого тем больше, чем больше значение Ks. Амплитудное значение искажений, как это и следует из выражения (11.2.21), в первую очередь зависит от соотношения текущих значений DN и D(M) и в меньшей степени от глубины сглаживания прогнозных отсчетов.

Максимальную величину искажения для точек скачка в первом приближении можно оценить из следующих соображений. Значения D(M) между точками скачка равны D(M) = А2/4, где А - амплитуда скачка, при этом значения коэффициента b для нижней и верхней точек скачка определяются выражениями b » А2/(4DN+A2), где DN = N точки скачка (для статистики Пуассона). Отсюда, при прогнозном значении М » N+А/2 для нижней точки скачка и M » N-A/2 для верхней точки относительная величина изменений N определится выражением d » 1/(2N/A+A), т.е. будет тем меньше, чем больше значения А и N и больше отношение N/A, что можно наглядно видеть на рис. 11.3.1в. Из этого выражения также следует, что максимальные искажения скачков, вносимые системой СРД, будут всегда в несколько раз меньше, чем статистические флюктуации непосредственных отсчетов d = 1/

на краях скачков.

При увеличении глубины регуляризации введением счета дисперсии D(M) по сглаженному массиву М картина искажений несколько изменяется и приведена на рис. 11.3.2. Реакция СРД на сглаживание дисперсии D(M) проявляется в своеобразной компенсации абсолютных отклонений отсчетов непосредственно по сторонам скачка отклонениями противоположного знака в более дальней зоне от скачка. Максимальные значения искажений остаются примерно на таком же уровне, как и для работы по несглаженной дисперсии D(M), с несколько меньшей зависимостью от увеличения значений N и А.

Рис. 11.3.2. СРД прямоугольного импульса. Счет Dm по сглаженному массиву М.

В приведенных примерах значение окна счета Кс принималось равным значению окна сглаживания Кs дополнительного массива М. При Кс > Ks картина процесса практически не изменяется. При обратном соотношении размеров окон вступает в действие второй фактор - отклонение от фактических значений счета текущих значений xi = m/n в малом окне Кс по массиву отсчетов, сглаженных с большим окном Ks. На расстояниях от скачка функции, больших Кс/2, СРД переходит в режим предпочтения сглаженных значений массива М, т.к. D(M) Þ 0, что при Кс < Ks может приводить к появлению существенной погрешности – выбросов на расстояниях ± Кс/2 от скачков. Естественно, что при практических измерениях таких условий наблюдаться не будет и эффект резко уменьшится, но для полного его исключения вариант Kc ³ Ks можно считать предпочтительным.

Рис. 11.3.3. СРД сигнала N по массиву M. Рис. 11.3.4. Коэффициент b.

(Счет Dm по несглаженному массиву М). (Среднее статистическое по 50 циклам)

На рис. 11.3.3 приведен пример регистрации рандомизированного модельного сигнала в виде прямоугольного импульса амплитудой 40 на фоне 10, на котором виден принцип работы СРД. Как и следовало ожидать, СРД производит сглаживание статистических флюктуаций фона и сигнала за пределами зоны ±Кс от скачка, отдавая предпочтение сглаженным прогнозным значениям Мi, и не изменяет значения фона и сигнала в пределах этой зоны в связи с резким возрастанием текущих значений D(M) в выражении (11.3.21). Изменение коэффициента b в зоне скачка, управляющего формированием выходных отсчетов, приведено на рис. 11.3.4 (среднестатистическое по 50-ти циклам рандомизации для модельного импульса на рис. 11.3.3) и наглядно показывает принцип адаптации СРД к динамике изменения значений обрабатываемых сигналов.

Статистическая оценка регуляризации данных по прямоугольным импульсам проводилась по 50-ти циклам рандомизации исходных массивов N и M. В качестве примера на рисунках 11.3.5 и 6 приведены результаты обработки статистики массивов N и Z. Кроме статистики циклов рандомизации проводилась суммарная обработка всех циклов по общей статистике фона и вершины импульсов. Результаты обработки для тех же установок фильтров приведены в таблице 3.

Рис. 11.3.5. Статистика сигнала N Рис. 11.3.6. Статистика сигнала Z

(Измерения по 50-ти циклам). (50 циклов. Счет Dm по несглаженному М)

Таблица 3.

Статистика значений фона и вершины импульсов (50 циклов).

Массивы и условия обработки

Фон

Сигнал

Сред. отсчет

Дисперсия

Сред. отсчет

Дисперсия

Основной входной массив N Дополнительный входной массив М Массив Z, счет Dm по несглаженному М Массив Z, счет Dm по сглаженному М Массив N, сглаженный весовым окном

9.96

9,89

9,87

9,84

11,5

9.97

9,49

5,47

4,76

17,9

50,1

50,2

49,7

49,9

48,5

52,0

47,4

22,3

18,6

29,2

Результаты моделирования подтверждают преимущество СРД перед простыми методами сглаживания. В числовой форме это наглядно проявляется в снижении дисперсии отсчетов выходного массива Z при практическом сохранении средних значений массива N и для фоновых отсчетов, и для амплитудных значений сигнала. При простом сглаживании "развал" фронтов сигнала (подавление высокочастотных составляющих спектра сигнала), как и должно быть при использовании низкочастотных фильтров, вызывает снижение по отношению к исходному массиву средних значений в максимумах и повышение фоновых значений сигнала, которое тем больше, чем больше окно весовой функции. Этот эффект особенно отчетливо проявляется в интервале окна фильтра по обе стороны от резких изменений сигнала.

При отсутствии дополнительных массивов М, коррелированных с регуляризируемым массивом N, формирование прогнозных значений Мi может производиться по ближайшим окрестностям текущих значений Ni в скользящем окне Ks. При строго корректном подходе текущая точка Ni не должна включаться в число счета прогнозных значений Mi, но, как показало моделирование, это практически не влияет на результаты регуляризации. При прогнозировании Mi по всем точкам окна Ks массив М формируется любым методом сглаживания из массива N, и все особенности работы СРД по сглаженным массивам М, рассмотренные выше, остаются без изменений при условии счета значений Dm в окне Кс по массиву М. Для исключения выбросов по обе стороны от скачков полезного сигнала счет Dm как дисперсии прогнозных значений Mi необходимо выполнять непосредственно по массиву N.

Фундаментальной особенностью СРД является возможность последовательной многократной фильтрации данных, при которой может осуществляться преимущественное повышение степени регуляризации данных с минимальными искажениями формы полезного сигнала. Для выполнения последнего размер окна Кс счета xi и Dm устанавливается минимальным (3-5 точек), а глубина регуляризации данных (степень подавления шумов) устанавливается количеством последовательных операций фильтрации (до 3-5 проходов). Пример регуляризации модельного массива N в три прохода приведен на рис. 11.3.7.

Рис. 11.3.7. СРД одиночного массива N (3 прохода. Счет Dm по массиву n)

Для сравнения пунктиром на рисунке приведено сглаживание массива 5-ти точечным фильтром Лапласа-Гаусса, который имеет коэффициент подавления шумов, эквивалентный 3-х проходному СРД (см. рис. 11.3.9).

На рисунках 11.3.8 и 11.3.9 приведены результаты статистической обработки 3-х проходной СРД для 25 циклов моделирования в сравнении с 1-м проходом и с 5-ти точечным фильтром Лапласа-Гаусса (кривая n5).