Rпер-кор ~2 °С/Вт.
Мощные усилители в интегральном исполнении часто имеют специальные цепи защиты от короткого замыкания на выходе, электрических перегрузок или перегрева кристалла (тепловая защита).
Устройство защиты от короткого замыкания обычно использует ограничительный транзистор, отпирающийся в критической ситуации вследствие падения напряжения на специальном резисторе и одновременно запирающий мощные выходные транзисторы. Это позволяет ограничить выходной ток до безопасного значения. В большинстве усилителей устройства защиты размещаются на том же кристалле, что и основная схема усилителя. Ограничительный резистор может быть внешним, чтобы имелась возможность установить нужный порог ограничения тока.
Схема защиты от электрических перегрузок (например, при работе усилителя на индуктивную нагрузку) содержит стабилитрон (или обратносмещенный диод), ограничивающий выходное напряжение до допустимого значения.
Защита от перегрева при повышении температуры кристалла или окружающей среды осуществляется специальной схемой, расположенной рядом с выходными транзисторами и автоматически отключающей (запирающей) их при определенной температуре (например, 175 °С с точностью ±10°С).
В табл. 2.2 приведены следующие электрические параметры усилителей для температуры окружающей среды 25 °С: Uи.п — допустимое напряжение источника питания или диапазон
рабочих напряжений; Pвых — выходная мощность;
Rн — сопротивление нагрузки; fн, fв — нижняя и верхняя граничные частоты; Rвх — входное сопротивление; Iвых — выходной ток; Uвых — выходное напряжение; Iпот — ток потребления; Рра — допустимая мощность рассеяния; Р*расс~ мощность рассеяния с теплоотводом
2.3. ЦИФРО-АНАЛОГОВЫЕ И АНАЛОГО-ЦИФРОВЫЕ ПРЕОБРАЗОВАТЕЛИ
Преобразователи по виду входных и выходных сигналов делятся на цифро-аналоговые (код-напряжение, код-проводимость и др.) и аналого-цифровые (напряжение-код, частота-код и др.).
Цифро-аналоговые (ЦАП) и аналого-цифровые (АЦП) преобразователи нашли широкое применение в связи с распространением цифровых методов обработки сигналов, используемых в системах сбора и обработки информации, для управления и контроля производственными процессами, в контрольно-измерительной аппаратуре, в технике связи.
Для преобразования аналоговых сигналов в код применяются следующие методы: поразрядного кодирования, непосредственного считывания, с использованием следящей системы, время-импульсные. Первые два метода характеризуются высоким быстродействием и возможностью получения высокой точности. Метод непосредственного считывания применяется для построения сверхбыстродействующих преобразователей.
В настоящее время выпускаются преобразователи различных типов, отличающиеся внутренней структурой, принципом действия, технологическими особенностями и эксплуатационными свойствами.
Они строятся как по разомкнутой схеме (отсутствует обратная связь, охватывающая весь преобразователь), так и по замкнутой (в цепь обратной связи АЦП входит ЦАП). В состав преобразователей входят ключи и коммутаторы, операционные усилители, схемы выборки и хранения, компараторы напряжения, а также цифровые логические элементы и запоминающие устройства.
2.3.1. ЦИФРО-АНАЛОГОВЫЕ ПРЕОБРАЗОВАТЕЛИ
Цифро-аналоговые преобразователи служат для преобразования входной информации, представленной в цифровом коде, в эквивалентный аналоговый сигнал.
Схемы ЦАП различаются по способам представления величин в цифровой форме (чаще в двоичной системе счисления), структурам преобразователя, характеру зависимости выходного сигнала от входного (линейные и нелинейные), способам получения выходного сигнала (с суммированием напряжений или токов, с делением напряжений), -виду выходного сигнала (с токовым, потенциальным или резистивным выходом), полярности выходного сигнала (одно-, двух- или четырехквадрантные), виду источника опорного сигнала (постоянного или изменяющегося). Для цифро-аналогового преобразования обычно используются два метода: метод суммирования единичных величин (используется один эталон) и метод суммирования с учетом веса разрядов (используется 2i эталонов, где i=1, 2,... n). При втором методе входеюй сигнал может подаваться в последовательном коде. При этом производится последовательное преобразование разрядов входного кода, начиная со старшего или младшего (преобразователь последовательного действия). Если входной сигнал подается в параллельном коде, то происходит одновременное суммирование всех разрядов цифрового кода (преобразователь параллельного действия). Преобразователи последовательного типа являются менее быстродействующими, чем параллельного.
В настоящее время выпускаются ЦАП как требующие дополнительного подсоединения внешних элементов, так и функционально законченные (автономные) БИС ЦАП, содержащие на одном кристалле все элементы, необходимые для процесса преобразования.
В процессе преобразования входной n-разрядный цифровой сигнал превращается в аналоговый выходной сигнал с 2n дискретными уровнями. Например, у 10-разрядного ЦАП выходное напряжение может принимать 1024 уровня от нуля до максимального значения. Обратной величиной числа выходных уровней является разрешающая способность. Она определяет наименьшее возможное приращение выходного аналогового сигнала при соответствующем изменении входного преобразуемого кода на единицу младшего разряда. Единицей измерения разрешения является единица самого младшего значащегося разряда (1МЗР). Она может выражаться в процентах или миллионных частях.
Одной из основных задач преобразователя является получение точного соответствия между входными и выходными сигналами. Погрешность преобразования показывает отличие реального преобразования от идеального. Точность преобразования характеризуется погрешностью преобразования, которая состоит из методической погрешности, обусловленной методом преобразования, и из инструментальной погрешности. Инструментальные погрешности вызыва-ются неточностью изготовления элементов преобразователя, зависимостью параметров элементов от температуры, влиянием шумов и помех. Погрешности проявляются в виде смещения нуля преобразователя, изменения коэффициента передачи, нелинейности и немонотонности передаточной характеристики (погрешности линейности и монотонности). Погрешность выражается в процентах от полного диапазона изменения аналогового выходного сигнала. Например, если 10-разрядный ЦАП должен иметь максимальный выходной сигнал 10 В, а реальное значение сигнала 9,5 В, то погрешность составляет 5 %. Кроме того, она может выражаться в долях наименьшего значащего разряда. Погрешность линейности показывает постоянство отношений входного сигнала к выходному во всем рабочем диапазоне. Интегральная погрешность линейности определяет максимальное отклонение передаточной характеристики от прямой линии, проведенной через нуль и точку максимального значения выходного сигнала. Дифференциальная погрешность линейности характеризует изменение крутизны передаточной характеристики и определяется как разность отклонений двух смежных уровней выходного сигнала. Дифференциальная погрешность идеального преобразователя равна нулю. Если она большая (более 1МЗР), то это говорит о немонотонности выходного сигнала. Погрешность монотонности характеризует изменение выходного сигнала при изменении значений входного последовательного кода. Монотонность показывает, что при непрерывном увеличении входного сигнала выходной сигнал не должен уменьшаться. Линейность и монотонность характеристик ЦАП ухудшаются по мере увеличения скорости изменения входных сигналов. Температурный коэффициент характеризует изменение полной погрешности от температуры.