Смекни!
smekni.com

2 Вопросы информатизации в контексте проблемы глобального климата: опыт системного подхода (стр. 3 из 7)

Выводы диссертации будут способствовать изменению подхода к моделированию глобальной климатической ситуации и ее мониторингу — в сторону увеличения роли космического зондирования атмосферы и ввод его результатов в международную информационную сеть.

Изложенная в диссертации концепция водородной энергетики может служить технологической основой стратегии элиминации выбросов парниковых газов в атмосферу. Использование материалов настоящего исследования может способствовать выходу России из экологического и экономического кризиса и обретению ей статуса мирового технологического лидера в области энергетики и машиностроения.

Апробация результатов исследования.
Основные положения и выводы работы обсуждены и изложены на заседаниях проблемной группы и кафедры социальной экологии РАГС, на ежегодной международной конференции «Пути самопознания человека в философии, религии, науке» (Киев-Севастополь, 1995-1996), отражены в ряде публикаций.

Структура диссертации.
Работа состоит из введения, двух глав, заключения, списка литературы и приложений.

ГЛАВА 1. Философско-методологические основания проблемы изменения глобального климата

1.1 Онтологические основания проблемы глобального климата

Одной из основных граней опасности экологической катастрофы является проблема изменения глобального климата, способная при сохранении сегодняшних тенденций стать угрозой существованию человечества. Особое место в философском рассмотрении этой глобальной проблемы занимает анализ ее онтологических оснований, в данном случае означающий анализ климатической ситуации и хода ее обсуждения.

Климат принято определять как среднюю динамику температуры и количества осадков определенной местности в течение года. Диссертант считает такое определение недостаточно наглядным и непригодным для использования в системном анализе, поэтому в данной работе используется следующее определение:

Климат — средняя динамика тропосферных явлений определенной местности в течение года, основными показателями которых являются: солнечная радиация, циркуляция воздушных масс, температура воздуха, осадки, влажность воздуха.

Преимущества такого определения в том, что оно не вырывает температуру и осадки из биосферы и атмосферы как нечто особое и изолированное, а констатирует их детерминированность атмосферными явлениями, которые в свою очередь зависят от бесчисленного множества биотических и абиотических явлений.

В этом параграфе излагаются положения, практически не вызывающие разногласий в научном мире, которые и послужат фундаментом настоящего философского исследования.

Что же вызывает такое беспокойство мирового сообщества в связи с глобальным климатом? Прежде всего то, что климат — это та часть природы, которую человек ощущает непосредственно, с которой связано его ощущение комфорта или дискомфорта. Не менее важным является прямая зависимость климатической и продовольственной безопасности - на сегодняшний день (а радикальных изменений ждать не приходится) основная часть всего мирового сельского хозяйства существует в естественном климате и, несмотря на достижения науки и техники, сгладить негативные климатические изменения не в состоянии. К примеру, засухи уничтожают урожай в эпоху научно-технической революции практически столь же эффективно, что и в древнем Египте (вспомним хотя бы засуху 1988 года в США1 , погубившую 40% урожая кукурузы). Таким образом, климат является фактором, от которого прямо зависит физическое существование человека: изменения климата влияют на его безопасность непосредственно, без какой-либо отсрочки и действуют очень быстро (к примеру, от перегрева человек умирает в течение нескольких часов).

И этот фактор меняется. Увы, изменения незапланированные, неуправляемые и могут привести к катастрофическим последствиям. К несчастью, уже есть примеры, подтверждающие этот тезис: вспомним наводнения в Китае, Восточной Европе, Турции и ураганы в США, вызванные усилением парникового эффекта.

Рассмотрим, чем обусловлены климатические изменения и в чем они состоят.

Все изменения среднеглобальной температуры вызываются изменениями теплового баланса атмосферы. Тепловой баланс атмосферы формируется радиационным балансом атмосферы и иными источниками тепла (в том числе геотермальными и антропогенными). Радиационный баланс зависит от активности Солнца и физико-химического состава атмосферы, некоторые компоненты которой задерживают длинноволновое излучение Земли, создавая парниковый эффект.

Таким образом, климат зависит как от естественных, так и антропогенных воздействий на атмосферу. Оценим (по возможности количественно) их значения и роль в изменениях глобального климата.

Явление парникового эффекта заключается в следующем.

Наличие в атмосфере газов, молекулы которых состоят из трех и более атомов (такие газы называются парниковыми) приводят к образованию т.н. парникового эффекта: прозрачные для солнечной коротковолновой радиации (0,40..0,75 мкм), они задерживают тепловое излучение земной поверхности, нагретой Солнцем (от 5 до нескольких десятков мкм).

Парниковый эффект можно определить как разность температур:

ΔT = Ts - Tr

где Ts — температура поверхности планеты
Tr = [F ↑ / σ]0,25— радиационная температура планеты
F ↑ — поток радиации, уходящей с поверхности планеты
σ — постоянная Больцмана

Согласно расчетам, в настоящее время ΔT = 33.2 К Вклад в ΔT основных парниковых газов представлен диаграммой в приложении 1.

Следует подчеркнуть, что парниковый эффект является неотъемлемой составляющей радиационного баланса Земли в течение миллионов лет, и жизнь на ней без парникового эффекта немыслима. Т.е. проблема не в наличии парникового эффекта, а в его антропогенном усилении.

Антропогенное увеличение концентрации парниковых газов приведет к повышению глобальной среднегодовой температуры на 2-4°С в течение всего лишь 50 лет. Отметим вклад в это потепление основных парниковых газов (см. Приложение 1).

Как видно из диаграммы, основную роль в усилении парникового эффекта играет увеличение концентрации углекислого газа, обусловленного четырьмя антропогенными источниками:

  • сжиганием ископаемого топлива (нефтепродуктов, каменного угля и природного газа), дающего около 80% потребляемой человечеством энергии; 2
  • сжиганием попутного газа;
  • производством цемента;
  • антропогенными изменениями биотических источников (сведение тропических лесов, распашка саванн и степей и т.д.).

Основной вклад в глобальный антропогенный выброс вносит сжигание органического топлива. На графике в Приложении 4 показан рост мирового потребления ископаемого топлива с начала технической революции 3 , а на диаграмме в Приложении 5 — удельный вес источников энергии в мировом потреблении4 . Суммарный выброс углекислоты при производстве цемента и сжигании попутного газа составляет не более 3% 5 .

Таким образом, в атмосферу ежегодно поступает, помимо естественных источников, ≈ 5,5 млрд. т СО2 от сжигания топлива и еще ≈ 1,7 млрд. т за счет сведения и выжигания тропических лесов и окисления органического вещества почвы (гумуса). На основании расчетов в 1993 году полный антропогенный выброс составил 7.2 ГтС (в пересчете на тонны углерода)6 .

В таблице в Приложении 7 приводятся данные об источниках СО2 , полученные различными исследователями.

Приведенные данные свидетельствуют, что природные выбросы СО2 на порядок меньше антропогенных, обусловленных сжиганием углеводородного топлива.

Имеются эмпирические данные, подтверждающие усиление парникового эффекта. На сегодняшний день они спорны: изменения климата столь незаметны, что позволяют многим климатологам объявить их нормальным отклонением от среднего. Но серьезного внимания они заслуживают: согласно математическим моделям теории катастроф, практически невозможно бороться с катастрофой, когда ее признаки станут уже заметными: скорость их увеличения неограниченно возрастает по мере приближения к катастрофе.

Регулярные наблюдения за климатом ведутся уже более 100 лет. Шесть самых жарких лет за это время пришлись на 80-е годы нашего века [источник этих сведений датирован 1990 годом], что позволило Джеймсу Хансену (Институт космических исследований им. Годдарда при НАСА) заявить в 1988 году Конгрессу США, что потепление климата уже ощутимо7 . В 1989 году А.Стронг (Национальное управление по исследованиям атмосферы и океана) доложил: «Измерения температуры океанической поверхности, произведенные со спутников в период 1982-1988 гг., ...показывают, что океан постепенно, но заметно нагревается примерно на 0,1°С в год»8 . Это чрезвычайно важно, так как из-за своей колоссальной теплоемкости океаны почти не реагируют на случайные климатические флуктуации. Обнаруженная тенденция к их потеплению доказывают серьезность проблемы.

В этой связи предметом особенно пристального внимания ученых-климатологов является обмен углекислотой между атмосферой и океаном.

Количество углекислоты, растворенной в океане, на два порядка превышает ее содержание в атмосфере Земли9 . Анализируя математические зависимости потоков СО2 в системе «атмосфера — океан», Н.Н.Моисеев приходит к выводу: «Если окажется, что

π > y3 =χT*2/(4l),

[где π — антропогенное поступление углекислоты в атмосферу
χ — коэффициент пропорциональности между способностью океана поглощать углекислоту и температурой атмосферы.
T* — некая критическая температура атмосферы.
l — коэффициент линейной аппроксимации зависимости между температурой атмосферы и содержанием углекислоты в атмосфере
— примечание диссертанта]